Klinische Neurophysiologie 2021; 52(01): 25-28
DOI: 10.1055/a-1353-9371
Übersicht

Wearables bei Demenzerkrankungen

Wearbles in Dementia
Agnes Pirker-Kees
1   Neurologische Abteilung, Klinik Hietzing
2   Karl Landsteiner Institut für Klinische Epilepsieforschung und Kognitive Neurologie
,
Christoph Baumgartner
1   Neurologische Abteilung, Klinik Hietzing
2   Karl Landsteiner Institut für Klinische Epilepsieforschung und Kognitive Neurologie
3   Medizinische Fakultät, Sigmund Freud Privatuniversität, Wien
› Author Affiliations

Zusammenfassung

Demenzerkrankungen führen durch den schleichenden Abbau kognitiver, sozialer und emotionaler Fähigkeiten, auch zu einem Verlust von Autonomie und Selbstbestimmtheit. Wearables sind am Körper getragene Sensoren: Akzelerometer und GPS-Tracker sind im Freizeit- und Fitnessbereich allgegenwärtig – sie zeichnen Bewegungs- und Positionsdaten auf. Das Potenzial, diese bei Demenzpatienten einzusetzen ist groß und wird intensiv beforscht. Wearables sind tlw. auch am Markt erhältlich (bspw. GPS-Tracker in Schuhsohlen). Informationen über Gangbild und Bewegungsdaten können auch Hinweise auf das Sturzrisiko, Verhaltensstörungen/Life-Events oder differenzialdiagnostische Aspekte geben. Trotz des großen Potenzials dürfen ethische Aspekte betreffend die Privatsphäre und den Datenschutz in der Entwicklung nicht außer Acht gelassen werden. Dieser Artikel gibt einen Überblick über die aktuelle Entwicklung von Wearables und damit verbundene ethische Aspekte.

Abstract

Dementia leads to loss of autonomy and self-determination due to breakdown of cognitive, social and emotional abilities. Wearables are body-worn sensors: accelerometers and GPS trackers are ubiquitous in the leisure and fitness area – they record movement and position data. The potential to use these in dementia patients is great and is being intensively researched. Some devices are already available on the market (e. g., position tracking shoe-inlays). Information about gait and motion data can also provide clues about the risk of falls, behavioral disorders/life events or differential diagnostic aspects. Despite their great potential, ethical aspects relating to privacy and data protection must not be overlooked in the development. This article provides an overview of the current development of wearables and related ethical aspects.



Publication History

Article published online:
23 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 WHO (2020). In WHO Dementia, Volume 2020 (https://www.who.int/news-room/fact-sheets/detail/dementia)
  • 2 Pirker-Kees A, Dal-Bianco P, Schmidt R. Effects of Psychotropic Medication on Cognition, Caregiver Burden, and Neuropsychiatric Symptoms in Alzheimer’s Disease over 12 Months: Results from a Prospective Registry of Dementia in Austria (PRODEM). Journal of Alzheimer's Disease 2019; 71: 623-630
  • 3 Ray PP, Dash D, De D. A Systematic Review and Implementation of IoT-Based Pervasive Sensor-Enabled Tracking System for Dementia Patients. Journal of Medical Systems 2019; 43: 287
  • 4 Godfrey A, Brodie M, van Schooten KS. et al. Inertial wearables as pragmatic tools in dementia. Maturitas 2019; 127: 12-17
  • 5 Collier S, Monette P, Hobbs K. et al. Mapping Movement: Applying Motion Measurement Technologies to the Psychiatric Care of Older Adults. Current Psychiatry Reports 2018; 20: 64
  • 6 Lowe SA, ÓLaighin G. Monitoring human health behaviour in one’s living environment: A technological review. Medical Engineering & Physics 2014; 36: 147-168
  • 7 Piau A, Wild K, Mattek N. et al. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. J Med Internet Res 2019; 21: e12785
  • 8 Mc Ardle R, Morris R, Wilson J. et al. What Can Quantitative Gait Analysis Tell Us about Dementia and Its Subtypes? A Structured Review. J Alzheimers Dis 2017; 60: 1295-1312
  • 9 Mc Ardle R., Del Din S., Galna B.. et al. Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors?. Gait Posture 2020; 76: 372-376
  • 10 Costa L, Gago MF, Yelshyna D. et al. Application of machine learning in postural control kinematics for the diagnosis of Alzheimer’s disease. Computational intelligence and neuroscience 2016; 2016: 3891253 DOI: 10.1155/2016/3891253.
  • 11 Whitney SL, Roche JL, Marchetti GF. et al. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: A measure of balance. Gait & Posture 2011; 33: 594-599
  • 12 Ihlen EAF, Weiss A, Bourke A. et al. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. Journal of Biomechanics 2016; 49: 1420-1428
  • 13 van Schooten KS, Pijnappels M, Rispens SM. et al. Ambulatory Fall-Risk Assessment: Amount and Quality of Daily-Life Gait Predict Falls in Older Adults. The Journals of Gerontology: Series A 2015; 70: 608-615
  • 14 Khan SS, Spasojevic S, Nogas J. et al. Agitation Detection in People Living with Dementia using Multimodal Sensors. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 3588-3591
  • 15 Khan SS, Ye B, Taati B. et al. Detecting agitation and aggression in people with dementia using sensors-A systematic review. Alzheimers Dement 2018; 14: 824-832
  • 16 Lai Kwan C, Mahdid Y, Motta Ochoa R.. et al. Wearable Technology for Detecting Significant Moments in Individuals with Dementia. BioMed Research International 2019; 2019: 6515813
  • 17 Murphy J, Holmes J, Brooks C. Measurements of daily energy intake and total energy expenditure in people with dementia in care homes: The use of wearable technology. The journal of nutrition, health & aging 2017; 21: 927-932
  • 18 Van der Roest HG, Wenborn J, Pastink C. et al. Assistive technology for memory support in dementia. Cochrane Database Syst Rev 2017; 6: Cd009627
  • 19 Dai B, Larnyo E, Tetteh EA. et al. Factors Affecting Caregivers’ Acceptance of the Use of Wearable Devices by Patients With Dementia: An Extension of the Unified Theory of Acceptance and Use of Technology Model. Am J Alzheimers Dis Other Demen 2020; 35: 1533317519883493
  • 20 Wettstein M, Wahl HW, Shoval N. et al. Out-of-home behavior and cognitive impairment in older adults: findings of the SenTra Project. J Appl Gerontol 2015; 34: 3-25
  • 21 Hunter J. Privacy Breach in BC Health Ministry Led to Freeze on Medical Research Data. Toronto, Canada: The Globe and Mail; 2016
  • 22 Beach S, Schulz R, Downs J. et al. Disability, age, and informational privacy attitudes in quality of life technology applications: Results from a national web survey. ACM Transactions on Accessible Computing (TACCESS) 2009; 2: 1-21
  • 23 Guarino PD, Vertrees JE, Asthana S. et al. Measuring informed consent capacity in an Alzheimer's disease clinical trial. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 2016; 2: 258-266