Transfusionsmedizin 2021; 11(03): 162-174
DOI: 10.1055/a-1342-0820
Übersicht

Blood Pharming – eine realistische Option?

Blood Pharming – A Realistic Option?
Romy Kronstein-Wiedemann
1   DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
2   Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
,
Jessica Thiel
1   DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
2   Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
,
Torsten Tonn
1   DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
2   Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
› Author Affiliations

Zusammenfassung

Die Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.

Abstract

Blood transfusion is an essential and irreplaceable part of modern medicine. However, particularly in patients with very rare blood groups, the lack of blood products still represents an important health problem worldwide. To address this problem, the focus of research in more recent years has been shifting to the generation of artificial red blood cells. These have potential advantages over donated blood, such as a reduced risk of transmitting infectious diseases. This overview summarises the current state of research on the process of erythropoiesis, the expansion strategies of the erythrocyte cells, the various sources of ex vivo expanded erythrocytes, the hurdles for clinical application, and the prospective scope in therapeutic administration.



Publication History

Article published online:
27 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wittman R, Henschler R. Ex-vivo-Expansion von Erythrozyten – aktueller Stand. Transfusionsmedizin 2012; 2: 132-140
  • 2 Fasano RM, Meyer EK, Branscomb J. et al. Impact of Red Blood Cell Antigen Matching on Alloimmunization and Transfusion Complications in Patients with Sickle Cell Disease: A Systematic Review. Transfus Med Rev 2019; 33: 12-23 DOI: 10.1016/j.tmrv.2018.07.003.
  • 3 Aygun B, Padmanabhan S, Paley C. et al. Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion 2002; 42: 37-43 DOI: 10.1046/j.1537-2995.2002.00007.x.
  • 4 Mallick S, Kotasthane DS, Chowdhury PS. et al. Bombay blood group: Is prevalence decreasing with urbanization and the decreasing rate of consanguineous marriage. Asian J Transfus Sci 2015; 9: 129-132 DOI: 10.4103/0973-6247.162695.
  • 5 Oriol R, Candelier JJ, Mollicone R. Molecular genetics of H. Vox Sang 2000; 78 (Suppl. 02) 105-108
  • 6 Hawksworth J, Satchwell TJ, Meinders M. et al. Enhancement of red blood cell transfusion compatibility using CRISPR-mediated erythroblast gene editing. EMBO Mol Med 2018; 10: e8454 DOI: 10.15252/emmm.201708454.
  • 7 Avent ND, Reid ME. The Rh blood group system: a review. Blood 2000; 95: 375-387
  • 8 Clark jr. LC, Gollan F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 1966; 152: 1755-1756
  • 9 Lee E, Lim ZR, Chen HY. et al. Defined Serum-Free Medium for Bioreactor Culture of an Immortalized Human Erythroblast Cell Line. Biotechnol J 2018; 13: e1700567
  • 10 Harnois T, Rousselot M, Rogniaux H. et al. High-level production of recombinant Arenicola marina globin chains in Escherichia coli: a new generation of blood substitute. Artif Cells Blood Substit Immobil Biotechnol 2009; 37: 106-116
  • 11 Lemaire F, Sigrist S, Delpy E. et al. Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas. J Cell Mol Med 2019; 23: 8025-8034
  • 12 Le Meur Y, Badet L, Essig M. et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: A safety and proof-of-principle study. Am J Transplant 2020; 20: 1729-1738
  • 13 Seghatchian J. The secrets of human stem cell-derived transfusable RBC for targeted large-scale production and clinical applications: A fresh look into what we need most and lessons to be learned. Transfus Apher Sci 2020; 59: 102862 DOI: 10.1016/j.transci.2020.102862.
  • 14 Douay L. Why industrial production of red blood cells from stem cells is essential for tomorrowʼs blood transfusion. Regen Med 2018; 13: 627-632 DOI: 10.2217/rme-2018-0025.
  • 15 Giarratana MC, Rouard H, Dumont A. et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 2011; 118: 5071-5079 DOI: 10.1182/blood-2011-06-362038.
  • 16 Jafari M, Ghadami E, Dadkhah T. et al. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2019; 234: 2373-2385 DOI: 10.1002/jcp.27262.
  • 17 Montagner S, Deho L, Monticelli S. MicroRNAs in hematopoietic development. BMC Immunol 2014; 15: 14 DOI: 10.1186/1471-2172-15-14.
  • 18 Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol 2014; 5: 3
  • 19 Gutierrez L, Caballero N, Fernandez-Calleja L. et al. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2020; 72: 89-105 DOI: 10.1002/iub.2192.
  • 20 Hattangadi SM, Burke KA, Lodish HF. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation. Blood 2010; 115: 4853-4861 DOI: 10.1182/blood-2009-07-235093.
  • 21 Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26: 6697-6714
  • 22 Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. Wiley Interdiscip Rev RNA 2019; 10: e1537 DOI: 10.1002/wrna.1537.
  • 23 Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010; 2: 640-653 DOI: 10.1002/wsbm.86.
  • 24 Jacobsen SEW, Nerlov C. Haematopoiesis in the era of advanced single-cell technologies. Nat Cell Biol 2019; 21: 2-8 DOI: 10.1038/s41556-018-0227-8.
  • 25 Palis J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett 2016; 590: 3965-3974 DOI: 10.1002/1873-3468.12459.
  • 26 Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood 2008; 112: 470-478 DOI: 10.1182/blood-2008-03-077883.
  • 27 Bessis M. [Erythroblastic island, functional unity of bone marrow]. Rev Hematol 1958; 13: 8-11
  • 28 Deleschaux C, Moras M, Lefevre SD. et al. An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. Int J Mol Sci 2020; 21: 5263 DOI: 10.3390/ijms21155263.
  • 29 Singh VK, Saini A, Chandra R. Role of Erythropoietin and Other Growth Factors in Ex Vivo Erythropoiesis. Adv Regen Med 2014; 8: 26520
  • 30 Comazzetto S, Murphy MM, Berto S. et al. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell 2019; 24: 477-486.e6 DOI: 10.1016/j.stem.2018.11.022.
  • 31 Zhou BO, Yu H, Yue R. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 2017; 19: 891-903 DOI: 10.1038/ncb3570.
  • 32 McGraw K, List A. Erythropoietin Receptor Signaling and Lipid Rafts. Vitam Horm 2017; 105: 79-100 DOI: 10.1016/bs.vh.2017.02.002.
  • 33 Bauer A, Tronche F, Wessely O. et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 1999; 13: 2996-3002 DOI: 10.1101/gad.13.22.2996.
  • 34 Millot S, Andrieu V, Letteron P. et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 2010; 116: 6072-6081 DOI: 10.1182/blood-2010-04-281840.
  • 35 Lazar-Karsten P, Dorn I, Meyer G. et al. The influence of extracellular matrix proteins and mesenchymal stem cells on erythropoietic cell maturation. Vox Sang 2011; 101: 65-76 DOI: 10.1111/j.1423-0410.2010.01453.x.
  • 36 Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med 2014; 3: 346-355 DOI: 10.5966/sctm.2013-0054.
  • 37 Lanza F, Seghatchian J. Trends and targets of various types of stem cell derived transfusable RBC substitution therapy: Obstacles that need to be converted to opportunity. Transfus Apher Sci 2020; 59: 102941 DOI: 10.1016/j.transci.2020.102941.
  • 38 Platt OS, Thorington BD, Brambilla DJ. et al. Pain in sickle cell disease. Rates and risk factors. N Engl J Med 1991; 325: 11-16 DOI: 10.1056/NEJM199107043250103.
  • 39 Fujimi A, Matsunaga T, Kobune M. et al. Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol 2008; 87: 339-350 DOI: 10.1007/s12185-008-0062-y.
  • 40 Hirose S, Takayama N, Nakamura S. et al. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells. Stem Cell Reports 2013; 1: 499-508 DOI: 10.1016/j.stemcr.2013.10.010.
  • 41 Kurita R, Suda N, Sudo K. et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 2013; 8: e59890 DOI: 10.1371/journal.pone.0059890.
  • 42 Lapillonne H, Kobari L, Mazurier C. et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 2010; 95: 1651-1659 DOI: 10.3324/haematol.2010.023556.
  • 43 Miharada K, Hiroyama T, Sudo K. et al. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol 2006; 24: 1255-1256 DOI: 10.1038/nbt1245.
  • 44 Neildez-Nguyen TM, Wajcman H, Marden MC. et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 2002; 20: 467-472 DOI: 10.1038/nbt0502-467.
  • 45 Trakarnsanga K, Griffiths RE, Wilson MC. et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun 2017; 8: 14750 DOI: 10.1038/ncomms14750.
  • 46 Heshusius S, Heideveld E, Burger P. et al. Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells. Blood Adv 2019; 3: 3337-3350 DOI: 10.1182/bloodadvances.2019000689.
  • 47 Huang X, Zhu B, Wang X. et al. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med 2016; 38: 1141-1151 DOI: 10.3892/ijmm.2016.2712.
  • 48 Severn CE, Macedo H, Eagle MJ. et al. Polyurethane scaffolds seeded with CD34(+) cells maintain early stem cells whilst also facilitating prolonged egress of haematopoietic progenitors. Sci Rep 2016; 6: 32149 DOI: 10.1038/srep32149.
  • 49 Ferreira MS, Jahnen-Dechent W, Labude N. et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 2012; 33: 6987-6997 DOI: 10.1016/j.biomaterials.2012.06.029.
  • 50 Tan J, Liu T, Hou L. et al. Maintenance and expansion of hematopoietic stem/progenitor cells in biomimetic osteoblast niche. Cytotechnology 2010; 62: 439-448 DOI: 10.1007/s10616-010-9297-6.
  • 51 Allenby MC, Panoskaltsis N, Tahlawi A. et al. Dynamic human erythropoiesis in a three-dimensional perfusion bone marrow biomimicry. Biomaterials 2019; 188: 24-37 DOI: 10.1016/j.biomaterials.2018.08.020.
  • 52 Rodling L, Volz EM, Raic A. et al. Magnetic Macroporous Hydrogels as a Novel Approach for Perfused Stem Cell Culture in 3D Scaffolds via Contactless Motion Control. Adv Healthc Mater 2018; 7: e1701403 DOI: 10.1002/adhm.201701403.
  • 53 Severn CE, Eissa AM, Langford CR. et al. Ex vivo culture of adult CD34(+) stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche. Biomaterials 2019; 225: 119533 DOI: 10.1016/j.biomaterials.2019.119533.
  • 54 Anstee DJ, Gampel A, Toye AM. Ex-vivo generation of human red cells for transfusion. Curr Opin Hematol 2012; 19: 163-169 DOI: 10.1097/MOH.0b013e328352240a.
  • 55 Zhang Y, Wang C, Wang L. et al. Large-Scale Ex Vivo Generation of Human Red Blood Cells from Cord Blood CD34(+) Cells. Stem Cells Transl Med 2017; 6: 1698-1709
  • 56 Christaki EE, Politou M, Antonelou M. et al. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58: 108-112
  • 57 Rouzbeh S, Kobari L, Cambot M. et al. Molecular signature of erythroblast enucleation in human embryonic stem cells. Stem Cells 2015; 33: 2431-2441 DOI: 10.1002/stem.2027.
  • 58 Dorn I, Klich K, Arauzo-Bravo MJ. et al. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica 2015; 100: 32-41
  • 59 WMDAA. 2020 WMDA Finance & Activities report. Im Internet (Stand: 05.07.2021): https://wmda.info/wp-content/uploads/2021/06/WMDA-Activities-Report1.pdf
  • 60 Campioni D, Rizzo R, Stignani M. et al. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry 2009; 76: 225-230
  • 61 Migliaccio AR, Masselli E, Varricchio L. et al. Ex-vivo expansion of red blood cells: how real for transfusion in humans?. Blood Rev 2012; 26: 81-95
  • 62 Seo Y, Shin KH, Kim HH. et al. Current Advances in Red Blood Cell Generation Using Stem Cells from Diverse Sources. Stem Cells Int 2019; 2019: 9281329 DOI: 10.1155/2019/9281329.
  • 63 Giarratana MC, Kobari L, Lapillonne H. et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23: 69-74
  • 64 Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981; 78: 7634-7638
  • 65 Thomson JA, Itskovitz-Eldor J, Shapiro SS. et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147 DOI: 10.1126/science.282.5391.1145.
  • 66 Amit M, Carpenter MK, Inokuma MS. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271-278
  • 67 Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140367 DOI: 10.1098/rstb.2014.0367.
  • 68 Kaufman DS, Hanson ET, Lewis RL. et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001; 98: 10716-10721 DOI: 10.1073/pnas.191362598.
  • 69 Lu SJ, Feng Q, Park JS. et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 2008; 112: 4475-4484 DOI: 10.1182/blood-2008-05-157198.
  • 70 Ma F, Ebihara Y, Umeda K. et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 2008; 105: 13087-13092 DOI: 10.1073/pnas.0802220105.
  • 71 Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19: 1129-1155
  • 72 Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 1994; 265: 1098-1101
  • 73 Rowe RG, Mandelbaum J, Zon LI. et al. Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell 2016; 18: 707-720 DOI: 10.1016/j.stem.2016.05.016.
  • 74 Ran D, Shia WJ, Lo MC. et al. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood 2013; 121: 2882-2890 DOI: 10.1182/blood-2012-08-451641.
  • 75 Bowles KM, Vallier L, Smith JR. et al. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 2006; 24: 1359-1369 DOI: 10.1634/stemcells.2005-0210.
  • 76 [Anonym] Stammzellgesetz. Im Internet (Stand: 17.06.2021): http://www.gesetze-im-internet.de/stzg/index.html
  • 77 Jang Y, Choi J, Park N. et al. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Exp Mol Med 2019; 51: 1-11 DOI: 10.1038/s12276-018-0190-2.
  • 78 Mattapally S, Pawlik KM, Fast VG. et al. Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc 2018; 7: e010239 DOI: 10.1161/JAHA.118.010239.
  • 79 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676 DOI: 10.1016/j.cell.2006.07.024.
  • 80 Yu J, Vodyanik MA, Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-1920 DOI: 10.1126/science.1151526.
  • 81 Hansen M, von Lindern M, van den Akker E. et al. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions. FEBS Lett 2019; 593: 3288-3303 DOI: 10.1002/1873-3468.13599.
  • 82 Bernecker C, Ackermann M, Lachmann N. et al. Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells Dev 2019; 28: 1540-1551
  • 83 Ebrahimi M, Forouzesh M, Raoufi S. et al. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11: 483
  • 84 Choi KD, Yu J, Smuga-Otto K. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009; 27: 559-567
  • 85 Dias J, Gumenyuk M, Kang H. et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev 2011; 20: 1639-1647
  • 86 Haro-Mora JJ, Uchida N, Demirci S. et al. Biallelic correction of sickle cell disease-derived induced pluripotent stem cells (iPSCs) confirmed at the protein level through serum-free iPS-sac/erythroid differentiation. Stem Cells Transl Med 2020; 9: 590-602
  • 87 Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19: 930
  • 88 Kessel KU, Bluemke A, Scholer HR. et al. Emergence of CD43-Expressing Hematopoietic Progenitors from Human Induced Pluripotent Stem Cells. Transfus Med Hemother 2017; 44: 143-150
  • 89 Prieto-Bermejo R, Romo-Gonzalez M, Perez-Fernandez A. et al. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. J Exp Clin Cancer Res 2018; 37: 125
  • 90 Sillar JR, Germon ZP, DeIuliis GN. et al. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20: 6003
  • 91 Brault J, Vigne B, Meunier M. et al. NOX4 is the main NADPH oxidase involved in the early stages of hematopoietic differentiation from human induced pluripotent stem cells. Free Radic Biol Med 2020; 146: 107-118
  • 92 Li X, Xia C, Wang T. et al. Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells. Stem Cell Res 2017; 21: 32-39
  • 93 Haake K, Ackermann M, Lachmann N. Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells-Ready for Take-Off. Stem Cells Transl Med 2019; 8: 332-339
  • 94 Trakarnsanga K, Wilson MC, Griffiths RE. et al. Qualitative and quantitative comparison of the proteome of erythroid cells differentiated from human iPSCs and adult erythroid cells by multiplex TMT labelling and nanoLC-MS/MS. PLoS One 2014; 9: e100874
  • 95 Turinetto V, Orlando L, Giachino C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int J Mol Sci 2017; 18: 1952
  • 96 Sun S, Peng Y, Liu J. Research advances in erythrocyte regeneration sources and methods in vitro. Cell Regen 2018; 7: 45-49
  • 97 Liu Z, Lu SJ, Lu Y. et al. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4. Stem Cells Int 2015; 2015: 389628 DOI: 10.1155/2015/389628.
  • 98 Nouri M, Deezagi A, Ebrahimi M. Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression. Ann Hematol 2016; 95: 549-556 DOI: 10.1007/s00277-015-2583-9.
  • 99 Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2020; 46: 100740
  • 100 Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Exp Hematol 2021; 95: 13-22 DOI: 10.1016/j.exphem.2021.01.001.
  • 101 Farzaneh M, Zare M, Hassani SN. et al. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J Cell Biochem 2018; 119: 6325-6336
  • 102 Javan GT, Can I, Yeboah F. et al. Novel interactions between erythroblast macrophage protein and cell migration. Blood Cells Mol Dis 2016; 60: 24-27
  • 103 Olivier EN, Marenah L, McCahill A. et al. High-Efficiency Serum-Free Feeder-Free Erythroid Differentiation of Human Pluripotent Stem Cells Using Small Molecules. Stem Cells Transl Med 2016; 5: 1394-1405
  • 104 Keerthivasan G, Small S, Liu H. et al. Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 2010; 116: 3331-3340
  • 105 Voorhees JL, Powell ND, Moldovan L. et al. Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS One 2013; 8: e77935
  • 106 Carlile GW, Smith DH, Wiedmann M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 2004; 103: 4310-4316
  • 107 Betin VM, Singleton BK, Parsons SF. et al. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 2013; 9: 881-893
  • 108 Merryweather-Clarke AT, Tipping AJ, Lamikanra AA. et al. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics 2016; 17: 817
  • 109 Trakarnsanga K, Ferguson D, Daniels DE. et al. Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation. Stem Cell Res Ther 2019; 10: 130
  • 110 Bernecker C, Kofeler H, Pabst G. et al. Cholesterol Deficiency Causes Impaired Osmotic Stability of Cultured Red Blood Cells. Front Physiol 2019; 10: 1529
  • 111 Zhang L, Flygare J, Wong P. et al. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 2011; 25: 119-124
  • 112 Giani FC, Fiorini C, Wakabayashi A. et al. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. Cell Stem Cell 2016; 18: 73-78
  • 113 Zhao B, Mei Y, Yang J. et al. Mouse fetal liver culture system to dissect target gene functions at the early and late stages of terminal erythropoiesis. J Vis Exp 2014; (91) e51894 DOI: 10.3791/51894.
  • 114 Zhao B, Liu H, Mei Y. et al. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes. Cancer Med 2019; 8: 1169-1174
  • 115 De Botton S, Sabri S, Daugas E. et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002; 100: 1310-1317
  • 116 Garcia-Faroldi G, Melo FR, Ronnberg E. et al. Active caspase-3 is stored within secretory compartments of viable mast cells. J Immunol 2013; 191: 1445-1452
  • 117 Luo M, Lu Z, Sun H. et al. Nuclear entry of active caspase-3 is facilitated by its p 3-recognition-based specific cleavage activity. Cell Res 2010; 20: 211-222
  • 118 Zhao B, Mei Y, Schipma MJ. et al. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 2016; 36: 498-510
  • 119 Kobari L, Yates F, Oudrhiri N. et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica 2012; 97: 1795-1803 DOI: 10.3324/haematol.2011.055566.
  • 120 Fujita A, Uchida N, Haro-Mora JJ. et al. beta-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs. Stem Cells 2016; 34: 1541-1552 DOI: 10.1002/stem.2335.
  • 121 Douay L. In vitro generation of red blood cells for transfusion: a model for regenerative medicine. Regen Med 2012; 7: 1-2 DOI: 10.2217/rme.11.108.