Subscribe to RSS
DOI: 10.1055/a-1331-7138
Assessing Doxorubicin-Induced Cardiomyopathy by 99mTc-3PRGD2 Scintigraphy Targeting Integrin αvβ3 in a Rat Model
Beurteilung der Doxorubicin-induzierten Kardiomyopathie durch 99mTc-3PRGD2-Szintigrafie gegen Integrin αvβ3 in einem RattenmodellAbstract
The present study evaluated interstitial alterations in doxorubicin-induced cardiomyopathy using a radiolabeled RGD peptide 99mTc-3PRGD2 specific for integrin αvβ3 that targets myofibroblasts.
Cardiomyopathy was induced in 20 Sprague-Dawley rats by intraperitoneal doxorubicin injections (2.5 mg/kg/week) for up to six weeks. 99mTc-3PRGD2 scintigraphy was performed in control rats (n = 6) at baseline and three, six, and nine weeks after first doxorubicin administration (n = 6, 6, and 5 for each time point). For another three rats of 6-week modeling, cold c(RGDyK) was co-injected with 99mTc-3PRGD2 to evaluate specific radiotracer binding. Semi-quantitative parameters were acquired to compare radiotracer uptake among all groups. The biodistribution of 99mTc-3PRGD2 was evaluated by a γ-counter after scintigraphy. Haematoxylin and eosin, and Masson’s staining were used to evaluate myocardial injury and fibrosis, while western blotting and immunofluorescence co-localization were used to analyze integrin αvβ3 expression in the myocardium.
The 99mTc-3PRGD2 half-life in the cardiac region (Heartt 1/2) of the 9-week model and heart radioactivity percentage (%Heart20 min, %Heart40 min and %Heart60 min) of the 6 and 9-week models were significantly increased compared to the control. Heart-to-background ratio (HBR20 min, HBR40 min and HBR60 min) increase began in the third week, continued until the sixth week, and was reversed in the ninth week, which paralleled the changing trend of cardiac integrin αvβ3 expression. The myocardial biodistribution of 99mTc-3PRGD2 was significantly correlated with integrin β3 expression.
The 99mTc-3PRGD2 scintigraphy allows for non-invasive visualization of interstitial alterations during doxorubicin-induced cardiomyopathy.
Zusammenfassung
Die vorliegende Studie untersuchte interstitielle Veränderungen bei Doxorubicin-induzierter Kardiomyopathie unter Verwendung eines radioaktiv markierten RGD-Peptids 99mTc-3PRGD2, das für Integrin αvβ3 spezifisch ist und auf Myofibroblasten abzielt.
Eine Kardiomyopathie wurde in 20 Sprague-Dawley-Ratten durch intraperitoneale Doxorubicin-Injektionen (2,5 mg/kg/Woche) für bis zu 6 Wochen induziert. Die 99mTc-3PRGD2-Szintigrafie wurde bei Kontrollratten (n = 6) zu Studienbeginn und 3, 6 und 9 Wochen nach der ersten Doxorubicin-Injektion durchgeführt (n = 6, 6 und 5 für jeden Zeitpunkt). Bei weiteren 3 Ratten mit 6-Wochen-Modellierung wurde kaltes c(RGDyK) mit 99mTc-3PRGD2 koinjiziert, um die spezifische Radiotracer-Bindung zu bewerten. Semiquantitative Parameter wurden erfasst, um die Radiotracer-Aufnahme zwischen allen Gruppen zu vergleichen. Die Biodistribution von 99mTc-3PRGD2 wurde nach der Szintigrafie mit einem γ-Zähler ausgewertet. Hämatoxylin und Eosin sowie die Masson-Färbung wurden zur Beurteilung der myokardialen Schädigung und Fibrose verwendet, während Western-Blot und Immunfluoreszenz-Co-Lokalisation zur Analyse der Integrin-αvβ3-Expression im Myokard eingesetzt wurden.
Die 99mTc-3PRGD2-Halbwertszeit in der Herzregion (Heart/1/2) des 9-Wochen-Modells und die prozentuale Herzradioaktivität (%Heart20 min, %Heart40 min und %Heart60 min) der 6- und 9-Wochen-Modelle waren im Vergleich zur Kontrolle signifikant erhöht. Der Anstieg der Herz-Background-Ratio (HBR20 min, HBR40 min und HBR60 min) begann in der dritten Woche, setzte sich bis zur sechsten Woche fort und kehrte sich in der neunten Woche um, was mit dem sich ändernden Trend der kardialen Integrin-αvβ3-Expression einherging. Die myokardiale Biodistribution von 99mTc-3PRGD2 korrelierte signifikant mit der Expression von Integrin β3.
Die 99mTc-3PRGD2-Szintigrafie ermöglicht die nichtinvasive Visualisierung von interstitiellen Veränderungen während der Doxorubicin-induzierten Kardiomyopathie.
Publication History
Received: 20 June 2020
Accepted: 06 December 2020
Article published online:
26 February 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Tan TC, Neilan TG, Francis S. et al Anthracycline-Induced Cardiomyopathy in Adults. Compr Physiol 2015; 5: 1517-1540 DOI: 10.1002/cphy.c140059.
- 2 Cardinale D, Colombo A, Lamantia G. et al Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. Journal of the American College of Cardiology 2010; 55: 213-220 DOI: 10.1016/j.jacc.2009.03.095.
- 3 Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. Journal of the American Heart Association 2014; 3: e000665 DOI: 10.1161/JAHA.113.000665.
- 4 Zhang S, Liu X, Bawa-Khalfe T. et al Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature medicine 2012; 18: 1639-1642 DOI: 10.1038/nm.2919.
- 5 Nebigil CG, Desaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front Pharmacol 2018; 9: 1262 DOI: 10.3389/fphar.2018.01262.
- 6 Goldsmith EC, Bradshaw AD, Zile MR. et al Myocardial fibroblast-matrix interactions and potential therapeutic targets. Journal of molecular and cellular cardiology 2014; 70: 92-99 DOI: 10.1016/j.yjmcc.2014.01.008.
- 7 Avelar E, Strickland CR, Rosito G. Role of Imaging in Cardio-Oncology. Current treatment options in cardiovascular medicine 2017; 19: 46 DOI: 10.1007/s11936-017-0546-2.
- 8 Cappetta D, Esposito G, Piegari E. et al SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int J Cardiol 2016; 205: 99-110 DOI: 10.1016/j.ijcard.2015.12.008.
- 9 Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71: 549-574 DOI: 10.1007/s00018-013-1349-6.
- 10 Verjans J, Wolters S, Laufer W. et al Early molecular imaging of interstitial changes in patients after myocardial infarction: comparison with delayed contrast-enhanced magnetic resonance imaging. Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology 2010; 17: 1065-1072 DOI: 10.1007/s12350-010-9268-5.
- 11 van den Borne SW, Isobe S, Zandbergen HR. et al Molecular imaging for efficacy of pharmacologic intervention in myocardial remodeling. JACC Cardiovascular imaging 2009; 2: 187-198 DOI: 10.1016/j.jcmg.2008.11.011.
- 12 van den Borne SW, Isobe S, Verjans JW. et al Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. Journal of the American College of Cardiology 2008; 52: 2017-2028 DOI: 10.1016/j.jacc.2008.07.067.
- 13 Shi J, Wang L, Kim YS. et al Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 2008; 51: 7980-7990 DOI: 10.1021/jm801134k.
- 14 Jia B, Liu Z, Zhu Z. et al Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin alphavbeta3-selective radiotracer 99mTc-3PRGD 2 in non-human primates. Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 2011; 13: 730-736 DOI: 10.1007/s11307-010-0385-y.
- 15 Ji B, Chen B, Wang T. et al (9)(9)mTc-3PRGD(2) SPECT to monitor early response to neoadjuvant chemotherapy in stage II and III breast cancer. European journal of nuclear medicine and molecular imaging 2015; 42: 1362-1370 DOI: 10.1007/s00259-015-3062-1.
- 16 Zhu Z, Miao W, Li Q. et al 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2012; 53: 716-722 DOI: 10.2967/jnumed.111.098988.
- 17 Leontyev S, Schlegel F, Spath C. et al Transplantation of engineered heart tissue as a biological cardiac assist device for treatment of dilated cardiomyopathy. European journal of heart failure 2013; 15: 23-35 DOI: 10.1093/eurjhf/hfs200.
- 18 Teichholz LE, Kreulen T, Herman MV. et al Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 1976; 37: 7-11 DOI: 10.1016/0002-9149(76)90491-4.
- 19 Huang XW, Wang JY, Li F. et al Biochemical characterization of the binding of cyclic RGDyK to hepatic stellate cells. Biochem Pharmacol 2010; 80: 136-143 DOI: 10.1016/j.bcp.2010.03.015.
- 20 Billingham ME, Mason JW, Bristow MR. et al Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978; 62: 865-872
- 21 Hong YJ, Park HS, Park JK. et al Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-mapping Cardiac Magnetic Resonance Imaging: An Animal Study. Scientific reports 2017; 7: 2663 DOI: 10.1038/s41598-017-02627-x.
- 22 Tarbit E, Singh I, Peart JN. et al Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev 2019; 24: 1-15 DOI: 10.1007/s10741-018-9720-1.
- 23 Cappetta D, Rossi F, Piegari E. et al Doxorubicin targets multiple players: A new view of an old problem. Pharmacol Res 2018; 127: 4-14 DOI: 10.1016/j.phrs.2017.03.016.
- 24 van den Borne SW, Diez J, Blankesteijn WM. et al Myocardial remodeling after infarction: the role of myofibroblasts. Nature reviews Cardiology 2010; 7: 30-37 DOI: 10.1038/nrcardio.2009.199.
- 25 Dimastromatteo J, Riou LM, Ahmadi M. et al In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mTc-RAFT-RGD. Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology 2010; 17: 435-443 DOI: 10.1007/s12350-010-9191-9.
- 26 Sarrazy V, Koehler A, Chow ML. et al Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovascular research 2014; 102: 407-417 DOI: 10.1093/cvr/cvu053.
- 27 Chistiakov DA, Orekhov AN, Bobryshev YV. The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 2016; 101: 231-240 DOI: 10.1016/j.yexmp.2016.09.002.
- 28 El-Sayyad HI, Ismail MF, Shalaby FM. et al Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci 2009; 5: 466-473 DOI: 10.7150/ijbs.5.466.
- 29 Zhang X, Xin J, Shi Y. et al Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin alphavbeta3: a feasibility study. Nuclear medicine and biology 2015; 42: 250-255 DOI: 10.1016/j.nucmedbio.2014.11.007.