RSS-Feed abonnieren
DOI: 10.1055/a-1286-5934
Rare-Earth-Catalyzed Hydrosilylation and Dehydrogenative Coupling of Hydrosilanes
We are grateful to the National Natural Science Foundation of China (Grant Numbers 21890722, 22071123, 21632006) for financial support.

Abstract
Activation of Si–H bonds with rare-earth complexes could generate the highly reactive rare-earth hydrides or silyl complexes, which are key intermediates for hydrosilylation and cross-coupling reactions. This Account summarizes the recent advances in the rare-earth-catalyzed hydrosilylation of unsaturated substrates and dehydrogenative coupling of hydrosilanes with amines in our laboratory. The results demonstrated that rare-earth catalysts are unique in their reactivity and selectivity, enabling some unprecedented reactions.
1 Introduction
2 Dehydrogenative Coupling of Hydrosilanes with Amines
3 Catalytic Dehydrogenative Coupling of Hydrosilanes with Amines
4 Catalytic Hydrosilylation of Terminal Alkenes and Polymerization of Styrene
5 Catalytic Hydrosilylation of Internal Alkenes
6 Catalytic Dihydrosilylation of Internal Alkynes
7 Conclusions and Outlook
Publikationsverlauf
Eingereicht: 19. September 2020
Angenommen nach Revision: 08. Oktober 2020
Accepted Manuscript online:
08. Oktober 2020
Artikel online veröffentlicht:
05. November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Marciniec B. In Applied Homogeneous Catalysis with Organometallic Compounds . Cornils B, Herrmann WA. Wiley; Weinheim: 2002: 491
- 1b Tilley TD. Comments Inorg. Chem. 1990; 10: 37
- 1c Tilley TD. Acc. Chem. Res. 1993; 26: 22
- 1d He JL, Harrod JF, Hynes R. Organometallics 1994; 13: 336
- 1e Gauvin F, Harrod JF. Adv. Organomet. Chem. 1998; 42: 363
- 1f Rendler S, Auer G, Oestreich M. Angew. Chem. Int. Ed. 2005; 44: 7620
- 1g Nolan SP. Acc. Chem. Res. 2008; 41: 349
- 1h Rappoport Z, Apeloig Y. In The Chemistry of Organic Silicon Compounds, Vol. 2 . Wiley; New York: 1998: 1687
- 2a Karstedt BD. US3775452, 1973
- 2b Speier JL, Webster JA, Barnes GH. J. Am. Chem. Soc. 1957; 79: 974
- 2c Aitken C, Harrod JF, Samuel E. J. Organomet. Chem. 1985; 279: C11
- 3a Molander GA, Romero JA. C. Chem. Rev. 2002; 102: 2161
- 3b In Molecular Catalysis of Rare-Earth Elements, Vol. 137. Roesky PW. Springer; Berlin: 2010: 1
- 3c Liu D, Liu B, Pan Z, Li J, Cui C. Sci. China: Chem. 2019; 62: 571
- 4 Anwander R. In Principles in Organolanthanide Chemistry . Springer; Berlin/Heidelberg: 1999: 3
- 5a Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
- 5b Schroeder MA, Wrighton MS. J. Organomet. Chem. 1977; 128: 345
- 6a Eisenstein O, Jean Y. J. Am. Chem. Soc. 1985; 107: 1177
- 6b Burger BJ, Thompson ME, Cotter WD, Bercaw JE. J. Am. Chem. Soc. 1990; 112: 1566
- 6c McGrady GS, Scherer W. Angew. Chem. Int. Ed. 2004; 43: 1782
- 7a Barbier-Baudry D, Dormond A. In Recent Advances in Hydride Chemistry . Peruzzini M, Poli R. Elsevier; Amsterdam: 2001: 249
- 7b Fegler W, Venugopal A, Kramer M, Okuda J. Angew. Chem. Int. Ed. 2015; 54: 1724
- 7c Shima T, Hou Z. In Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, Vol. 137. Zheng Z. Springer; New York: 2017: 315
- 8a Fu P.-F, Brard L, Li Y, Marks TJ. J. Am. Chem. Soc. 1995; 117: 7157
- 8b Takaki K, Kamata T, Miura Y, Shishido T, Takehira K. J. Org. Chem. 1999; 64: 3891
- 8c Trifonov AA, Spaniol TP, Okuda J. Organometallics 2001; 20: 4869
- 8d Takaki K, Komeyama K, Takehira K. Tetrahedron 2003; 59: 10381
- 8e Konkol M, Kondracka M, Voth P, Spaniol TP, Okuda J. Organometallics 2008; 27: 3774
- 8f Oyamada J, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2011; 50: 10720
- 8g Luo Y, Teng H.-L, Xue C, Nishiura M, Hou Z. ACS Catal. 2018; 8: 8027
- 9a Castillo I, Tilley TD. J. Am. Chem. Soc. 2001; 123: 10526
- 9b Castillo I, Tilley TD. Organometallics 2001; 20: 5598
- 9c Sadow AD, Tilley TD. Angew. Chem. Int. Ed. 2003; 42: 803
- 10 Forsyth CM, Nolan SP, Marks TJ. Organometallics 1991; 10: 2543
- 11 Corey JY, Braddock-Wilking J. Chem. Rev. 1999; 99: 175
- 12 Chen Y, Song H, Cui C. Angew. Chem. Int. Ed. 2010; 49: 8958
- 13 Ruspic C, Spielmann J, Harder S. Inorg. Chem. 2007; 46: 5320
- 14a Eabom C, Hitchcock PB, Izod K, Smith JD. J. Am. Chem. Soc. 1994; 116: 12071
- 14b Niemeyer M. Eur. J. Inorg. Chem. 2001; 1969
- 14c Cofone A, Niemeyer M. Z. Anorg. Allg. Chem. 2006; 632: 1930
- 15a Deacon GB, Forsyth CM. Chem. Commun. 2002; 2522
- 15b Deacon GB, Forsyth CM, Junk PC. Eur. J. Inorg. Chem. 2005; 817
- 15c Evans WJ, Champagne TM, Ziller JW. Organometallics 2007; 26: 1204
- 15d Bochkarev LN, Makarov VM, Hrzhanovskaya YN, Zakharov LN, Fukin GK, Yanovsky AI, Struchkov YT. J. Organomet. Chem. 1994; 467: C3
- 16 Perrin L, Eisenstein O, Maron L. New J. Chem. 2007; 31: 549
- 17 Armitage DA. In The Silicon-Heteroatom Bond 1991; 365
- 18 Xie W, Hu H, Cui C. Angew. Chem. Int. Ed. 2012; 51: 11141
- 19 Horino Y, Livinghouse T. Organometallics 2004; 23: 12
- 20 Li J, Zhao C, Liu J, Huang H, Wang F, Xu X, Cui C. Inorg. Chem. 2016; 55: 9105
- 21a Duncalf DJ, Hitchcock PB, Lawless GA. Chem. Commun. 1996; 269
- 21b Gun’ko YK, Hitchcock PB, Lappert MF. J. Organomet. Chem. 1995; 499: 213
- 21c Cassani MC, Lappert MF, Laschi F. Chem. Commun. 1997; 1563
- 21d Deacon GB, Junk PC, Moxey GJ. Z. Anorg. Allg. Chem. 2008; 634: 2789
- 21e Liddle ST, Arnold PL. Dalton Trans. 2007; 3305
- 21f Arnold PL, Liddle ST. Organometallics 2006; 25: 1485
- 22a Kitayama K, Uozumi Y, Hayashi T. J. Chem. Soc., Chem. Commun. 1995; 1533
- 22b Jensen JF, Svendsen BY, la Cour TV, Pedersen HL, Johannsen M. J. Am. Chem. Soc. 2002; 124: 4558
- 22c Sunada Y, Tsutsumi H, Shigeta K, Yoshida R, Hashimoto T, Nagashima H. Dalton Trans. 2013; 42: 16687
- 22d Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
- 22e Buslov I, Becouse J, Mazza S, Montandon-Clerc M, Hu X.-L. Angew. Chem. Int. Ed. 2015; 54: 14523
- 22f Noda D, Tahara A, Sunada Y, Nagashima H. J. Am. Chem. Soc. 2016; 138: 2480
- 22g Jakobsson K, Chu T, Nikonov GI. ACS Catal. 2016; 6: 7350
- 22h Leich V, Spaniol TP, Okuda J. Organometallics 2016; 35: 1179
- 22i Buch F, Brettar J, Harder S. Angew. Chem. Int. Ed. 2006; 45: 2741
- 23 Hu M.-Y, He Q, Fan S.-J, Wang Z.-C, Liu L.-Y, Mu Y.-J, Peng Q, Zhu S.-F. Nat. Commun. 2018; 9: 221
- 24 Liu J, Chen W, Li J, Cui C. ACS Catal. 2018; 8: 2230
- 25 Waterman R. Organometallics 2013; 32: 7249
- 26 Gao L, Zhang Y, Song Z. Synlett 2013; 24: 139
- 27a Corriu RJ. P, Granier M, Lanneau G. J. Organomet. Chem. 1998; 562: 79
- 27b Liu Z, Tan H, Fu T, Xia Y, Qiu D, Zhang Y, Wang J. J. Am. Chem. Soc. 2015; 137: 12800
- 27c Hazrati H, Oestreich M. Org. Lett. 2018; 20: 5367
- 27d Liedtke J, Loss S, Widauer C, Grńtzmacher H. Tetrahedron 2000; 56: 143
- 27e Fu P.-F. J. Mol. Catal. A 2006; 243: 253
- 27f Gorczyński A, Zaranek M, Witomska S, Bocian A, Stefankiewicz AR, Kubicki M, Patroniak V, Pawluć P. Catal. Commun. 2016; 78: 71
- 28a Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
- 28b Guo J, Wang H, Xing S, Hong X, Lu Z. Chem 2019; 5: 881
- 29 Chen W, Song H, Li J, Cui C. Angew. Chem. Int. Ed. 2020; 59: 2365