Gesundheitswesen 2021; 83(11): 903-909
DOI: 10.1055/a-1205-0917
Originalarbeit

Einflussfaktoren der körperlichen Aktivität von Kindern in Kitas: Eine Mehrebenenanalyse mit Querschnittsdaten aus dem Projekt QueB 2

Childcare Center Characteristics Associated with Children’s MVPA: A Multilevel Analysis with Cross-Sectional Data from the QueB 2 Project
Christina Müller
1   Institut für angewandte Gesundheitswissenschaften, Hochschule für angewandte Wissenschaften Coburg, Coburg
,
Holger Hassel
1   Institut für angewandte Gesundheitswissenschaften, Hochschule für angewandte Wissenschaften Coburg, Coburg
› Author Affiliations

Zusammenfassung

Ziel der Studie Die Rahmenbedingungen in Kindertagesstätten beeinflussen die tägliche Zeit in moderater bis intensiver körperlicher Aktivität (MVPA) von Kindern unter 6 Jahren. Die Studie untersucht, welche Faktoren in der Kita und im Verhalten der pädagogischen Fachkräfte die MVPA-Level der Kinder beeinflussen.

Methodik Querschnittsdaten aus 8 Kitas aus dem Forschungsprojekt QueB 2 wurden verwendet. Die Zeit pro Tag in MVPA wurde mit ActiGraph GT3X+Akzelerometern gemessen. Untersuchte unabhängige Variablen waren Alter, Geschlecht, MVPA-Level der pädagogischen Fachkräfte und 8 Merkmale aus einer Selbsteinschätzungs-Checkliste für Kitas. Hierarchische lineare Regressionsmodelle wurden mit SAS berechnet.

Ergebnisse Valide Akzelerometerdaten lagen von 126 Kindern (51,59% Mädchen) vor. Mädchen erreichten pro Tag im Durchschnitt 33,01, Jungen 49,11 Min. an MVPA. Nur 1,72% der Varianz war auf die Kita zurückzuführen. Als signifikante Einflussfaktoren wurden Innenräume mit Platz für Bewegung, Regeln mit Bezug zu Bewegung und das Mitmachen der pädagogischen Fachkräfte bei Aktivitäten identifiziert.

Schlussfolgerung Individuelle Faktoren (Alter, Geschlecht) scheinen für die tägliche MVPA stärker ausschlaggebend zu sein als Merkmale der Kitas und sollten bei der Implementierung von Maßnahmen zur Bewegungsförderung berücksichtigt werden.

Abstract

Objectives Characteristics of childcare centers influence the daily time spent on moderate-to-vigorous physical activity (MVPA) by children younger than 6 years. The study explores the characteristics of childcare centers and the behavior of staff that influence children’s MVPA levels.

Methods We used cross-sectional data from 8 childcare centers in the research project QueB 2. MVPA per day was measured with ActiGraph GT3X+accelerometers. Independent variables included were age, sex, staff MVPA levels and 8 items from a self-assessment-checklist for childcare centers. Hierarchical linear regression models were run with SAS.

Results Valid accelerometer data on 126 children (51.59% girls) were available. Girls spent a mean of 33.01, boys of 49.11 min per day in MVPA. Childcare centers accounted for only 1.72% of variance. Indoor space, rules concerning physical activity and staff participating in activities were significantly associated with children’s MVPA.

Conclusions Individual variables (age, sex) seem to have a greater influence on children’s daily time spent on MVPA than childcare center characteristics and should be taken into account when implementing interventions to promote physical activity.



Publication History

Article published online:
31 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Carson V, Lee E-Y, Hewitt L. et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health 2017; 17: 33-63 DOI: 10.1186/s12889-017-4860-0.
  • 2 Ekelund U, Luan Ja, Sherar LB. et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 2012; 307: 704-712 DOI: 10.1001/jama.2012.156.
  • 3 World Health Organization. Global recommendations on physical activity for health. Genf; 2010
  • 4 Finger JD, Varnaccia G, Borrmann A. et al. Körperliche Aktivität von Kindern und Jugendlichen in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. Journal of Health Monitoring 2018; 3: 24-31 DOI: 10.17886/RKI-GBE-2018-006.2.
  • 5 Statistisches Bundesamt. Kinder und tätige Personen in Tageseinrichtungen und in öffentlich geförderter Kindertagespflege am 01.03.2019. Im Internet: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Soziales/Kindertagesbetreuung/Publikationen/Downloads-Kindertagesbetreuung/tageseinrichtungen-kindertagespflege-5225402197004.pdf?_blob=publicationFile; Stand: 19.05.2020
  • 6 Lindsay AC, Greaney ML, Wallington SF. et al. A review of early influences on physical activity and sedentary behaviors of preschool-age children in high-income countries. J Spec Pediatr Nurs 2017; 22: 1-15 DOI: 10.1111/jspn.12182.
  • 7 Pohlabeln H, Wirsik N, Sprengeler O et al. Identifikation von typischen Bewegungsorten von 2-10-jährigen Kindern: Abschlussbericht. Bremen; 2018
  • 8 Robeyns I. The Capability Approach: a theoretical survey. Journal of Human Development 2005; 6: 93-117 DOI: 10.1080/146498805200034266
  • 9 Sen A. Capability and Well-Being. In: Hausman DM, ed. The philosophy of economics: An anthology 3rd ed.Cambridge: Cambridge Univ. Press; 2008: 270–293
  • 10 Tonge KL, Jones RA, Okely AD. Correlates of children’s objectively measured physical activity and sedentary behavior in early childhood education and care services: A systematic review. Prev Med 2016; 89: 129-139 DOI: 10.1016/j.ypmed.2016.05.019
  • 11 Copeland KA, Khoury JC, Kalkwarf HJ. Child Care Center Characteristics Associated With Preschoolers’ Physical Activity. Am J Prev Med 2016; 50: 470-479 DOI: 10.1016/j.amepre.2015.08.028
  • 12 Bell AC, Finch M, Wolfenden L. et al. Child physical activity levels and associations with modifiable characteristics in centre-based childcare. Aust N Z J Public Health 2015; 39: 232-236 DOI: 10.1111/1753-6405.12314.
  • 13 Henderson KE, Grode GM, O’Connell ML. et al. Environmental factors associated with physical activity in childcare centers. Int J Behav Nutr Phys Act 2015; 12: 1-9 DOI: 10.1186/s12966-015-0198-0.
  • 14 Ward S, Bélanger M, Donovan D. et al. Systematic review of the relationship between childcare educators’ practices and preschoolers’ physical activity and eating behaviours. Obes Rev 2015; 16: 1055-1070 DOI: 10.1111/obr.12315.
  • 15 Jones RA, Sousa-Sá E, Peden M. et al. Childcare Physical Activity Interventions: A Discussion of Similarities and Differences and Trends, Issues, and Recommendations. Int J Environ Res Public Health 2019; 16 DOI: 10.3390/ijerph16234836.
  • 16 Fossdal TS, Kippe K, Handegård BH. et al. “Oh oobe doo, I wanna be like you” associations between physical activity of preschool staff and preschool children. PLoS ONE 2018; 13: 1-16 DOI: 10.1371/journal.pone.0208001.
  • 17 Ungerer-Röhrich U Kita-Check-App. Im Internet: https://play.google.com/store/apps/details?id=de.dfki.edtec.KitaCheck&hl=de; Stand: 21.05.2019
  • 18 Müller C, Foitzik E, Hassel H. Bewegte Kitas durch Organisationsentwicklung. Präv Gesundheitsf 2020; 15: 50-55 DOI: 10.1007/s11553-019-00737-0
  • 19 Butte NF, Wong WW, Lee JS. et al. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc 2014; 46: 1216-1226 DOI: 10.1249/MSS.0000000000000209.
  • 20 Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 2011; 14: 411-416 DOI: 10.1016/j.jsams.2011.04.003
  • 21 Migueles JH, Cadenas-Sanchez C, Ekelund U. et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med 2017; 47: 1821-1845 DOI: 10.1007/s40279-017-0716-0.
  • 22 Cain KL, Bonilla E, Conway TL. et al. Defining Accelerometer Nonwear Time to Maximize Detection of Sedentary Time in Youth. Pediatr Exerc Sci 2018; 30: 288-295 DOI: 10.1123/pes.2017-0132.
  • 23 Rich C, Geraci M, Griffiths L. et al. Quality control methods in accelerometer data processing: defining minimum wear time. PLoS ONE 2013; 8: 1-8 DOI: 10.1371/journal.pone.0067206.
  • 24 West BT, Welch KB, Galecki AT. Linear mixed models: A practical guide using statistical software. Boca Raton: Chapman & Hall/CRC; 2007
  • 25 Snijders TAB, Bosker RJ. Multilevel analysis: An introduction to basic and advanced multilevel modeling. 2. Aufl. London: Sage; 2012
  • 26 Nilsen AKO, Anderssen SA, Resaland GK. et al. Boys, older children, and highly active children benefit most from the preschool arena regarding moderate-to-vigorous physical activity: A cross-sectional study of Norwegian preschoolers. Prev Med Rep 2019; 14: 1-7 DOI: 10.1016/j.pmedr.2019.100837.
  • 27 Schmutz EA, Leeger-Aschmann CS, Radtke T. et al. Correlates of preschool children’s objectively measured physical activity and sedentary behavior: a cross-sectional analysis of the SPLASHY study. Int J Behav Nutr Phys Act 2017; 14: 1-13 DOI: 10.1186/s12966-016-0456-9.
  • 28 Konstabel K, Veidebaum T, Verbestel V. et al. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes 2014; 38: 135-143 DOI: 10.1038/ijo.2014.144.
  • 29 Hnatiuk JA, Salmon J, Hinkley T. et al. A review of preschool children’s physical activity and sedentary time using objective measures. Am J Prev Med 2014; 47: 487-497 DOI: 10.1016/j.amepre.2014.05.042.
  • 30 Hands B, Parker H. Male and Female Differences in Health Benefits Derived from Physical Activity: Implications for Exercise Prescription. J Womens Health, Issues Care 2016; 5 DOI: 10.4172/2325-9795.1000238
  • 31 Gubbels JS, van Kann DHH, Jansen MWJ. Play equipment, physical activity opportunities, and children’s activity levels at childcare. J Environ Public Health 2012; 2-8 DOI: 10.1155/2012/326520
  • 32 Messing S, Rütten A, Abu-Omar K. et al. How Can Physical Activity Be Promoted Among Children and Adolescents? A Systematic Review of Reviews Across Settings. Front Public Health 2019; 7: 1-15 DOI: 10.3389/fpubh.2019.00055.
  • 33 Dedrick RF, Ferron JM, Hess MR. et al. Multilevel Modeling: A Review of Methodological Issues and Applications. Rev Educ Res 2009; 79: 69-102 DOI: 10.3102/0034654308325581.
  • 34 Montoye AHK, Moore RW, Bowles HR. et al. Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors. Br J Sports Med 2018; 52: 1507-1516 DOI: 10.1136/bjsports-2015-095947.
  • 35 Vandenbroucke JP, Elm Evon, Altman DG. et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 2007; 4: 1628-1654 DOI: 10.1371/journal.pmed.0040297.