Subscribe to RSS
DOI: 10.1055/a-1135-9277
Robotisch assistierte obere gastrointestinale und hepatopankreatobiliäre Chirurgie: Etablierung durch einen Stepwise Approach und eine Analyse der ersten 100 Operationen
Robot-Assisted Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery: Implementation Using a Stepwise Approach and Analyses of the First 100 Surgical ProceduresPublication History
Publication Date:
04 June 2020 (online)

Zusammenfassung
Einleitung Die robotisch assistierte Chirurgie ist eine vielversprechende Technik zur Überwindung der Grenzen der laparoskopischen Chirurgie – insbesondere bei komplexen chirurgischen Eingriffen in der Oberbauchchirurgie. Im Folgenden beschreiben wir die Etablierung komplexer robotisch assistierter Oberbauchchirurgie in unserem Zentrum für minimalinvasive Chirurgie und präsentieren die Ergebnisse aus den ersten 100 Eingriffen.
Material und Methoden Die robotisch assistierte Chirurgie wurde mit dem Da Vinci® Xi Surgical System™ durchgeführt. Die Eingriffe wurden von 2 Chirurgen durchgeführt, die Spezialisten auf dem Gebiet der minimalinvasiven Chirurgie sind. Die robotisch assistierte Oberbauchchirurgie wurde in 3 Schritten etabliert. Step 1: Zunächst wurden robotisch assistierte Eingriffe mit leichterem Schwierigkeitsgrad durchgeführt (Cholezystektomien, atypische Magenresektionen und Fundoplikationen). Step 2: Anschließend wurden linksseitige Pankreasresektionen, Adrenalektomien und Lebersegment- bzw. atypische Leberresektionen als Verfahren mit mittlerem Schwierigkeitsgrad durchgeführt. Step 3: Schließlich wurden fortgeschrittene und hochkomplexe Verfahren durchgeführt (Hemihepatektomien, komplexe Pankreasresektionen, Gastrektomien und Ösophagektomien). Die von Juli 2017 bis Oktober 2018 erhobenen Daten wurden retrospektiv hinsichtlich Konversionsrate, Morbidität (Clavien-Dindo > 2) und Mortalität analysiert.
Ergebnisse Der 1. Schritt der Etablierung unseres Roboterprogramms umfasste 26 Eingriffe. Hier betrugen die Konversionsrate, die Morbidität und die Mortalität jeweils 0%. Im 2. Schritt wurden 23 Eingriffe durchgeführt. Die Konversionsrate, Morbidität und Mortalität lagen bei 28, 8 und 0%. Der letzte Schritt umfasste 51 hochkomplexe operative Verfahren. Diese Verfahren hatten eine Konversionsrate 43%, eine Morbidität von 41% und eine Mortalität von 4%.
Schlussfolgerung Unser Stepwise Approach ermöglicht eine sichere Etablierung robotisch assistierter Oberbauchchirurgie mit vergleichbaren Morbiditäts- und Mortalitätsraten – auch bei hochkomplexen operativen Eingriffen. Hochkomplexe Eingriffe erforderten jedoch vergleichsweise häufig eine Konversion, was durch die geringen Erfahrungswerte und durch die Lernkurve beeinflusst sein könnte.
Abstract
Introduction Robot-assisted surgery is a promising technique for overcoming the limitations of laparoscopic surgery, especially for complex and advanced surgical procedures. We now describe the implementation of our robotic upper GI and HPB surgery program in our centre of excellence for minimally invasive surgery and the results of our first 100 surgical procedures.
Method Robot-assisted surgery was performed using the Da Vinci® Xi Surgical System™. Robot-assisted surgical procedures were performed by two surgeons specialising in minimally invasive surgery. Our robotic surgery program for upper GI and HPB surgery was established in three steps. Step 1: firstly, relatively easy surgical procedures were performed robotically, including cholecystectomies, minor gastric resections and fundoplications. Step 2: secondly, pancreatic left sided resections, adrenalectomies and small liver resection were performed, as procedures with moderate degree of difficulty. Step 3: finally, advanced and highly complex procedures were performed, including right hemihepatectomy, complex pancreatic resections, total gastrectomies and oesophagectomies. Data collected from July 2017 till October 2018 were analysed retrospectively with regard to conversion rate, morbidity (Clavien Dindo > 2) and 90-d-mortality.
Results The first step of establishing our robotic surgical program included 26 procedures. Here, conversion rate, morbidity and mortality were 0%. In the second step of implementation, 23 procedures were performed. Conversion rate, morbidity and mortality were 28, 8 and 0% respectively. The last step included 51 advanced and highly complex procedures. These procedures had a morbidity of 41%, a mortality of 4% and a conversion rate of 43%.
Conclusion Our stepwise approach enables safe implementation of a robotic surgical program for upper GI and HPB surgery with comparable morbidity and mortality even for highly complex procedures. However, highly complex procedures in the learning curve required a high conversion rate.
-
Literatur
- 1 Litynski GS. Erich Mühe and the rejection of laparoscopic cholecystectomy (1985): a surgeon ahead of his time. JSLS 1998; 2: 341-346
- 2 Litynski GS. Profiles in laparoscopy: Mouret, Dubois, and Perissat: the laparoscopic breakthrough in Europe (1987 – 1988). JSLS 1999; 3: 163-167
- 3 Dubois F, Berthelot G, Levard H. [Cholecystectomy by coelioscopy]. Presse Med 1989; 18: 980-982
- 4 Tang CL, Schlich T. Surgical innovation and the multiple meanings of randomized controlled trials: the first RCT on minimally invasive cholecystectomy (1980–2000). J Hist Med Allied Sci 2017; 72: 117-141 doi:10.1093/jhmas/jrw027
- 5 Riviere D, Gurusamy KS, Kooby DA. et al. Laparoscopic versus open distal pancreatectomy for pancreatic cancer. Cochrane Database Syst Rev 2016; (04) CD011391
- 6 Draeger T, Völkel V, Gerken M. et al. Long-term oncologic outcomes after laparoscopic versus open rectal cancer resection: a high-quality population-based analysis in a Southern German district. Surg Endosc 2018; 32: 4096-4104 doi:10.1007/s00464-018-6148-6
- 7 Bonjer HJ, Deijen CL, Abis GA. et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 2015; 372: 1324-1332 doi:10.1056/NEJMoa1414882
- 8 Mariette C, Markar SR, Dabakuyo-Yonli TS. et al. Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 2019; 380: 152-162 doi:10.1056/NEJMoa1805101
- 9 Mariette C, Markar S, Dabakuyo-Yonli TS. et al. Health-related quality of life following hybrid minimally invasive versus open esophagectomy for patients with esophageal cancer, analysis of a multicenter, open-label, randomized phase III controlled trial: the MIRO trial. Ann Surg 2019;
- 10 Deichmann S, Bolm LR, Honselmann KC. et al. Perioperative and long-term oncological results of minimally invasive pancreatoduodenectomy as hybrid technique – a matched pair analysis of 120 cases. Zentralbl Chir 2018; 143: 155-161 doi:10.1055/s-0043-124374
- 11 Wellner UF, Küsters S, Sick O. et al. Hybrid laparoscopic versus open pylorus-preserving pancreatoduodenectomy: retrospective matched case comparison in 80 patients. Langenbecks Arch Surg 2014; 399: 849-856 doi:10.1007/s00423-014-1236-0
- 12 Hashizume M, Shimada M, Tomikawa M. et al. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 2002; 16: 1187-1191 doi:10.1007/s004640080154
- 13 Melvin WS, Needleman BJ, Krause KR. et al. Robotic resection of pancreatic neuroendocrine tumor. J Laparoendosc Adv Surg Tech A 2003; 13: 33-36 doi:10.1089/109264203321235449
- 14 Oberlin DT, Flum AS, Lai JD. et al. The effect of minimally invasive prostatectomy on practice patterns of American urologists. Urol Oncol 2016; 34: 255.e1-e5 doi:10.1016/j.urolonc.2016.01.008
- 15 Stitzenberg KB, Wong YN, Nielsen ME. et al. Trends in radical prostatectomy: centralization, robotics, and access to urologic cancer care. Cancer 2012; 118: 54-62 doi:10.1002/cncr.26274
- 16 Bowles TA, Watters DA. Time to CUSUM: simplified reporting of outcomes in colorectal surgery. ANZ J Surg 2007; 77: 587-591 doi:10.1111/j.1445-2197.2007.04156.x
- 17 Merola G, Cavallaro G, Iorio O. et al. Learning curve in open inguinal hernia repair: a quality improvement multicentre study about Lichtenstein technique. Hernia 2019;
- 18 Chen QY, Zhong Q, Zheng CH. et al. Robotic spleen-preserving splenic hilar lymphadenectomy for advanced proximal gastric cancer: a feasible and simplified procedure. Surg Oncol 2019; 28: 67-68 doi:10.1016/j.suronc.2018.11.014
- 19 Rasmussen TB, Ulrichsen SP, Norgaard M. Use of risk-adjusted CUSUM charts to monitor 30-day mortality in Danish hospitals. Clin Epidemiol 2018; 10: 445-456 doi:10.2147/CLEP.S157162
- 20 Zureikat AH, Beane JD, Zenati MS. et al. 500 minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance. Ann Surg 2019;
- 21 Deng J, Su Q, Ren Z. et al. Comparison of short-term outcomes between minimally invasive McKeown and Ivor Lewis esophagectomy for esophageal or junctional cancer: a systematic review and meta-analysis. Onco Targets Ther 2018; 11: 6057-6069 doi:10.2147/OTT.S169488
- 22 Klompmaker S, van Hilst J, Wellner UF. et al. Outcomes after minimally-invasive versus open pancreatoduodenectomy: a pan-European propensity score matched study. Ann Surg 2020; 271: 356-363 doi:10.1097/SLA.0000000000002850
- 23 Schröder W, Bruns CJ. [Quality criteria for minimally invasive esophagectomy – a register analysis]. Chirurg 2017; 88: 976 doi:10.1007/s00104-017-0533-x
- 24 He H, Wu Q, Wang Z. et al. Short-term outcomes of robot-assisted minimally invasive esophagectomy for esophageal cancer: a propensity score matched analysis. J Cardiothorac Surg 2018; 13: 52 doi:10.1186/s13019-018-0727-4
- 25 Nickel F, Haney CM, Kowalewski KF. et al. Laparoscopic versus open pancreaticoduodenectomy: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 2020; 271: 54-66 doi:10.1097/SLA.0000000000003309
- 26 Steiner SH, Cook RJ, Farewell VT. et al. Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics 2000; 1: 441-452 doi:10.1093/biostatistics/1.4.441
- 27 Hubig L, Lack N, Mansmann U. Statistical process monitoring to improve quality assurance of inpatient care. BMC Health Serv Res 2020; 20: 21 doi:10.1186/s12913-019-4866-7
- 28 Hogg ME, Zenati M, Novak S. et al. Grading of surgeon technical performance predicts postoperative pancreatic fistula for pancreaticoduodenectomy independent of patient-related variables. Ann Surg 2016; 264: 482-491 doi:10.1097/SLA.0000000000001862
- 29 Page P. Surgical skill and complication rates after bariatric surgery. N Engl J Med 2014; 370: 285 doi:10.1056/NEJMc1313890
- 30 Tseng JF, Pisters PW, Lee JE. et al. The learning curve in pancreatic surgery. Surgery 2007; 141: 456-463 doi:10.1016/j.surg.2006.09.013
- 31 Asbun HJ, Moekotte AL, Vissers FL. et al. The Miami International Evidence-based Guidelines on Minimally Invasive Pancreas Resection. Ann Surg 2020; 271: 1-14 doi:10.1097/SLA.0000000000003590
- 32 Son T, Hyung WJ. Robotic gastrectomy for gastric cancer. J Surg Oncol 2015; 112: 271-278 doi:10.1002/jso.23926
- 33 Suda K, Nakauchi M, Inaba K. et al. Robotic surgery for upper gastrointestinal cancer: current status and future perspectives. Dig Endosc 2016; 28: 701-713 doi:10.1111/den.12697
- 34 Kim HI, Park MS, Song KJ. et al. Rapid and safe learning of robotic gastrectomy for gastric cancer: multidimensional analysis in a comparison with laparoscopic gastrectomy. Eur J Surg Oncol 2014; 40: 1346-1354 doi:10.1016/j.ejso.2013.09.011
- 35 Hernandez JM, Dimou F, Weber J. et al. Defining the learning curve for robotic-assisted esophagogastrectomy. J Gastrointest Surg 2013; 17: 1346-1351 doi:10.1007/s11605-013-2225-2
- 36 Boone BA, Zenati M, Hogg ME. et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg 2015; 150: 416-422 doi:10.1001/jamasurg.2015.17
- 37 Kowalewski KF, Schmidt MW, Proctor T. et al. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study. Surg Endosc 2018; 32: 1656-1667 doi:10.1007/s00464-018-6109-0
- 38 Odermatt M, Ahmed J, Panteleimonitis S. et al. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis. Surg Endosc 2017; 31: 4067-4076 doi:10.1007/s00464-017-5453-9
- 39 Ahlering TE, Skarecky D, Lee D. et al. Successful transfer of open surgical skills to a laparoscopic environment using a robotic interface: initial experience with laparoscopic radical prostatectomy. J Urol 2003; 170: 1738-1741 doi:10.1097/01.ju.0000092881.24608.5e
- 40 Park EJ, Kim CW, Cho MS. et al. Is the learning curve of robotic low anterior resection shorter than laparoscopic low anterior resection for rectal cancer? A comparative analysis of clinicopathologic outcomes between robotic and laparoscopic surgeries. Medicine (Baltimore) 2014; 93: e109 doi:10.1097/MD.0000000000000109
- 41 van der Geest LG, van Rijssen LB, Molenaar IQ. et al. Volume-outcome relationships in pancreatoduodenectomy for cancer. HPB (Oxford) 2016; 18: 317-324 doi:10.1016/j.hpb.2016.01.515
- 42 Ravaioli M, Pinna AD, Francioni G. et al. A partnership model between high- and low-volume hospitals to improve results in hepatobiliary pancreatic surgery. Ann Surg 2014; 260: 871-875 doi:10.1097/SLA.0000000000000975
- 43 Finks JF, Osborne NH, Birkmeyer JD. Trends in hospital volume and operative mortality for high-risk surgery. N Engl J Med 2011; 364: 2128-2137 doi:10.1056/NEJMsa1010705
- 44 Farivar BS, Flannagan M, Leitman IM. General surgery residentsʼ perception of robot-assisted procedures during surgical training. J Surg Educ 2015; 72: 235-242 doi:10.1016/j.jsurg.2014.09.008
- 45 Sroka G, Feldman LS, Vassiliou MC. et al. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg 2010; 199: 115-120 doi:10.1016/j.amjsurg.2009.07.035
- 46 Kowalewski KF, Garrow CR, Proctor T. et al. LapTrain: multi-modality training curriculum for laparoscopic cholecystectomy-results of a randomized controlled trial. Surg Endosc 2018; 32: 3830-3838 doi:10.1007/s00464-018-6110-7
- 47 Nickel F, Kowalewski KF, Rehberger F. et al. Face validity of the pulsatile organ perfusion trainer for laparoscopic cholecystectomy. Surg Endosc 2017; 31: 714-722 doi:10.1007/s00464-016-5025-4
- 48 Laubert T, Esnaashari H, Auerswald P. et al. Conception of the Lübeck Toolbox curriculum for basic minimally invasive surgery skills. Langenbecks Arch Surg 2018; 403: 271-278 doi:10.1007/s00423-017-1642-1
- 49 Thomaschewski M, Esnaashari H, Hofer A. et al. Video tutorials increase precision in minimally invasive surgery training – a prospective randomised trial and follow-up study. Zentralbl Chir 2019; 144: 153-162 doi:10.1055/a-0638-8295
- 50 Chen R, Rodrigues Armijo P, Krause C. et al. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg Endosc 2020; 34: 361-367 doi:10.1007/s00464-019-06775-1
- 51 Tam V, Zenati M, Novak S. et al. Robotic pancreatoduodenectomy biotissue curriculum has validity and improves technical performance for surgical oncology fellows. J Surg Educ 2017; 74: 1057-1065 doi:10.1016/j.jsurg.2017.05.016
- 52 Ramos P, Montez J, Tripp A. et al. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int 2014; 113: 836-842 doi:10.1111/bju.12559
- 53 Herron DM, Marohn M. SAGES-MIRA Robotic Surgery Consensus Group. A consensus document on robotic surgery. Surg Endosc 2008; 22: 313-325 doi:10.1007/s00464-007-9727-5
- 54 Mark Knab L, Zenati MS, Khodakov A. et al. Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship. Ann Surg Oncol 2018; 25: 3445-3452 doi:10.1245/s10434-018-6686-0
- 55 Royal Australasian College of Surgeons. Surgical Audit and Peer Review Guide. Fourth Edition (2013). Melbourne, Australia. Im Internet (Stand: 23.03.2020): https://umbraco.surgeons.org/media/1350/surgical_audit_and_peer_review_guide_2014.pdf