Transfusionsmedizin 2020; 10(04): 199-207
DOI: 10.1055/a-1119-1796
Übersicht

Künstliche Sauerstofftransporter können mehr als Sauerstoff liefern

Artificial Oxygen Carriers Can Do More Than Just Deliver Oxygen
Hans Bäumler
Institut für Transfusionsmedizin, Charité – Universitätsmedizin Berlin, Berlin
› Author Affiliations

Zusammenfassung

Zum gegenwärtigen Zeitpunkt ist in der EU und den USA kein artifizieller Sauerstofftransporter zugelassen. Hämoglobin-basierte Sauerstoff-Carrier (HBOC) sind bereits seit Jahrzehnten Gegenstand wissenschaftlicher Untersuchungen. Ein wesentliches Hindernis bei der Zulassung war bisher der Anspruch der Entwickler, einen universell einsetzbaren Blutersatz zu produzieren. Die Beschränkung auf eine Indikation scheint erfolgversprechender zu sein. Der Ansatz, nicht nur Sauerstoff von der Lunge zum Gewebe, sondern auch der Abtransport von Kohlendioxid vom Gewebe zur Lunge zu transportieren, der effektiver als mit Erythrozyten durchgeführt werden kann, erscheint besonders attraktiv. Aufgrund vielversprechender präklinischer sowie klinischer Untersuchungen besteht die Hoffnung, dass in absehbarer Zeit auch in der EU künstliche Sauerstofftransporter für therapeutische Zwecke zur Verfügung stehen werden.

Abstract

At present, no artificial oxygen transporter is approved in the EU and USA. Hemoglobin-based oxygen carriers (HBOC) have been the subject of scientific studies for decades. A major obstacle to approval has so far been the developersʼ claim to produce a universally applicable blood substitute. The restriction to one indication seems to be more promising. The approach to transport not only oxygen from the lung to the tissue, but also the removal of carbon dioxide from the tissue to the lung, which can be carried out more effectively than with erythrocytes, appears to be particularly attractive. Based on promising preclinical and clinical investigations, there is hope that in the foreseeable future artificial oxygen transporters will be available for therapeutic purposes in the EU as well.



Publication History

Article published online:
16 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Meier J, Filipescu D, Kozek-Langenecker S. et al. Intraoperative transfusion practices in Europe. Br J Anaesth 2016; 116: 255-261
  • 2 WHO. Blood safety and availability. Im Internet (Stand: 10.06.2020): https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability
  • 3 hiv.gov. U.S. Department of Health & Human Services History. A TIMELINE OF HIV/AIDS. Im Internet (Stand: 24.09.2020): https://www.hiv.gov/hiv-basics/overview/history/hiv-and-aids-timeline
  • 4 Paul-Ehrlich-Institut. Hämovigilanzbericht-2016–2017. 2018 Im Internet (Stand: 24.04.2019): http://www.pei.de/haemovigilanzbericht
  • 5 Brockamp T, Nienaber U, Mutschler M. et al. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU® . Crit Care 2012; 16: R129 doi:10.1186/cc11432
  • 6 Huang GS, Dunham CM. Mortality outcomes in trauma patients undergoing prehospital red blood cell transfusion: a systematic literature review. Int J Burns Trauma 2017; 7: 17-26
  • 7 Müller MM, Geisen C, Zacharowski K. et al. Transfusion von Erythrozytenkonzentraten: Indikationen, Trigger und Nebenwirkungen. Dtsch Arztebl Int 2015; 112: 507-518
  • 8 Höfer C, Lefering R. Jahresbericht 2018 – TraumaRegister DGU® . 2018 Im Internet (Stand: September 2019): http://www.traumaregister-dgu.de/fileadmin/user_upload/traumaregister-dgu.de/docs/Downloads/Jahresbericht_2019.pdf
  • 9 DRK-Blutspendedienste. Wofür wird meine Blutspende benötigt? – DRK-Blutspendedienste. Im Internet (Stand: 2020): https://www.drk-blutspende.de/informationen-zur-blutspende/wofuer-wird-meine-blutspende-benoetigt.php
  • 10 Zielinski MD, Stubbs JR, Berns KS. et al. Prehospital blood transfusion programs: Capabilities and lessons learned. J Trauma Acute Care Surg 2017; 82: S70-S78
  • 11 Bodnar D, Rashford S, Hurn C. et al. Characteristics and outcomes of patients administered blood in the prehospital environment by a road based trauma response team. Emerg Med J 2014; 31: 583-588
  • 12 DRF Luftrettung. Erstmalig Leben dank Blutkonserven an Bord gerettet | DRF Luftrettung. Im Internet (Stand: 18.09.2019): https://www.drf-luftrettung.de/de/leben/aktuelles/erstmalig-leben-dank-blutkonserven-bord-gerettet
  • 13 Transfusionsgesetz in der Fassung der Bekanntmachung vom 28. August 2007 (BGBl. I S. 2169), das zuletzt durch Artikel 11 des Gesetzes vom 19. Mai 2020 (BGBl. I S. 1018) geändert worden ist. Im Internet (Stand: 26.09.2020): https://www.gesetze-im-internet.de/tfg/BJNR175200998.html
  • 14 Soudry E, Stein M. Prehospital management of uncontrolled bleeding in trauma patients: nearing the light at the end of the tunnel. Isr Med Assoc J 2004; 6: 485-489
  • 15 Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie), Gesamtnovelle 2017. 2017 Im Internet (Stand: September 2020): https://www.bundesaerztekammer.de/aerzte/medizin-ethik/wissenschaftlicher-beirat/veroeffentlichungen/haemotherapietransfusionsmedizin/richtlinie/
  • 16 Ünlü A, Yılmaz S, Yalçın Ö. et al. Bringing packed red blood cells to the point of combat injury: Are we there yet?. Turkish J Hematol 2018; 35: 185-191
  • 17 Riess JG, Riess JG. Oxygen carriers (“blood substitutes”) – Raison dʼetre, chemistry, and some physiology. Chem Rev 2001; 101: 2797-2919
  • 18 Vorstand der Bundesärztekammer auf Empfehlung des Wissenschaftlichen Beirats. Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten. 2014 Im Internet (Stand: 26.09.2020): https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/QLL_Haemotherapie_2014.pdf
  • 19 Tissot JD, Bardyn M, Sonego G. et al. The storage lesions: From past to future. Transfus Clin Biol 2017; 24: 277-284
  • 20 DʼAlessandro A, Liumbruno GM. Red blood cell storage and clinical outcomes: new insights. Blood Transfus 2017; 15: 101-103
  • 21 Yoshida T, Prudent M, DʼAlessandro A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus 2019; 17: 27-52
  • 22 Thomas T, Spitalnik SL. Hitchhikerʼs guide to the red blood cell storage lesion. Blood Transfus 2019; 17: 1-3
  • 23 Meybohm P, Schmitz-Rixen T, Steinbicker A. et al. Das Patient-Blood-Management-Konzept: Gemeinsame Empfehlung der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin und der Deutschen Gesellschaft für Chirurgie. Chirurg 2017; 88: 867-870
  • 24 Simoni J. New approaches in commercial development of artificial oxygen carriers. Artif Organs 2014; 38: 621-624
  • 25 Keipert PE. Hemoglobin-based oxygen carrier (HBOC) development in trauma: Previous regulatory challenges, lessons learned, and a path forward. Adv Exp Med Biol 2017; 977: 343-350
  • 26 Spahn DR. Artificial oxygen carriers: A new future?. Crit Care 2018; 22: 46
  • 27 Bäumler H. Hemoglobin Submicron Particles as Carriers for Oxygen and Drugs. 17th International Symposium on Blood Substitutes & Oxygen Therapeutics (XVII-ISBS-2019). Nara, Japan. 2019.
  • 28 Habler O, Pape A, Meier J. et al. Künstliche Sauerstoffträger als Alternative zur Bluttransfusion. Anaesthesist 2005; 54: 741-754
  • 29 Riess JG. Perfluorocarbon-based oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol 2006; 34: 567-580
  • 30 Spiess BD. Perfluorocarbon emulsions as a promising technology: A review of tissue and vascular gas dynamics. J Appl Physiol 2009; 106: 1444-1452
  • 31 Schöler M, Frietsch T, Jambor C. et al. [Artificial blood – coming soon or never reaching clinical maturity?]. Dtsch Med Wochenschr 2010; 135: 575-581
  • 32 Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif Organs 2010; 34: 622-634
  • 33 Laudien J, Groß-Heitfeld C, Mayer C. et al. Perfluorodecalin-filled Poly(n-butyl-cyanoacrylate) nanocapsules as potential artificial oxygen carriers: Preclinical safety and biocompatibility. J Nanosci Nanotechnol 2015; 15: 5637-5648
  • 34 Ferenz KB, Steinbicker AU. Artificial oxygen carriers–past, present, and future–a review of the most innovative and clinically relevant concepts. J Pharmacol Exp Ther 2019; 369: 300-310
  • 35 Chang TMS. Future generations of red blood cell substitutes. J Intern Med 2003; 253: 527-535
  • 36 Henkel-Hanke T, Oleck M. Artificial oxygen carriers: A current review. AANA J 2007; 75: 205-211
  • 37 Weiskopf RB. Hemoglobin-based oxygen carriers: Compassionate use and compassionate clinical trials. Anesth Analg 2010; 110: 659-662
  • 38 Jahr JS, Sadighi A, Doherty L. et al. Hemoglobin-based Oxygen Carriers: History, Limits, brief Summary of the State of the Art, including clinical Trials. In: Mozzarelli A, Bettati S. eds. Chemistry and Biochemistry of Oxygen Therapeutics. Chichester, UK: John Wiley & Sons, Ltd; 2011: 301-316
  • 39 Williamson LM, Devine DV. Challenges in the management of the blood supply. Lancet 2013; 381: 1866-1875
  • 40 Alayash AI. Blood substitutes: Why havenʼt we been more successful?. Trends Biotechnol 2014; 32: 177-185
  • 41 Chang TMS. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions?. Artif Cells Nanomed Biotechnol 2015; 43: 145-147
  • 42 Bunn HF, Esham WT, Bull RW. The renal handling of hemoglobin. I. Glomerular filtration. J Exp Med 1969; 129: 909-923
  • 43 Feola M, Gonzalez H, Canizaro PC. et al. Development of a bovine stroma-free hemoglobin solution as a blood substitute. Surg Gynecol Obstet 1983; 157: 399-408
  • 44 Fronticelli C, Bucci E, Orth C. Solvent regulation of oxygen affinity in hemoglobin. Sensitivity of bovine hemoglobin to chloride ions. J Biol Chem 1984; 259: 10841-10844
  • 45 Breepoel PM, Kreuzer F, Hazevoet M. Interaction of organic phosphates with bovine hemoglobin – I. Oxylabile and phosphate-labile proton binding. Pflügers Arch Eur J Physiol 1981; 389: 219-225
  • 46 Vlahakes GJ, Lee R, Jacobs EE. et al. Hemodynamic effects and oxygen transport properties of a new blood substitute in a model of massive blood replacement. J Thorac Cardiovasc Surg 1990; 100: 379-388
  • 47 Remy B, Deby-Dupont G, Lamy M. Red blood cell substitutes: Fluorocarbon emulsions and haemoglobin solutions. Br Med Bull 1999; 55: 277-298
  • 48 Winslow RM. Red Cell Substitutes. Semin Hematol 2007; 44: 51-59
  • 49 Starck V. Die Resorbirbarkeit des Hämatins und die Bedeutung der Hämoglobinpräparate1). Dtsch Med Wochenschr 1898; 24: 805-808
  • 50 Amberson WR, Jennings JJ, Rhode CM. Clinical experience with hemoglobin-saline solutions. J Appl Physiol 1949; 1: 469-489
  • 51 Miller JH, McDonald RK. The effect of hemoglobin on renal function in the human. J Clin Invest 1951; 30: 1033-1040
  • 52 Rabiner SF, Helbert JR, Lopas H. et al. Evaluation of a stroma-free hemoglobin solution for use as a plasma expander. J Exp Med 1967; 126: 1127-1142
  • 53 Hess JR, Reiss RF. Resuscitation and the limited utility of the present generation of blood substitutes. Transfus Med Rev 1996; 10: 276-285
  • 54 Marchand A, Crepin N, Roulland I. et al. Application of HBOCs electrophoretic method to detect a new blood substitute derived from the giant extracellular haemoglobin of lugworm. Drug Test Anal 2017; 9: 1762-1767
  • 55 Le Gall T, Polard V, Rousselot M. et al. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier. J Biotechnol 2014; 187: 1-9
  • 56 Stelter L, Pinkernelle JG, Michel R. et al. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 2010; 12: 25-34
  • 57 Zaugg RH, Walder JA, Walder RY. et al. Modification of hemoglobin with analogs of aspirin. J Biol Chem 1980; 255: 2816-2821
  • 58 Chatterjee R, Welty E, Walder RY. et al. Isolation and characterization of a new hemoglobin derivative cross-linked between the alpha chains (lysine 99 alpha 1—lysine 99 alpha 2). J Biol Chem 1986; 261: 9929-9937
  • 59 Chen JY, Scerbo M, Kramer G. A review of blood substitutes: Examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics 2009; 64: 803-813
  • 60 Sloan EP, Koenigsberg M, Gens D. et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA 1999; 282: 1857-1864
  • 61 Winslow RM. Current status of oxygen carriers (‘blood substitutes’): 2006. Vox Sang 2006; 91: 102-110
  • 62 Levy JH, Goodnough LT, Greilich PE. et al. Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: Results of a randomized, double-blind trial. J Thorac Cardiovasc Surg 2002; 124: 35-42
  • 63 Zhang N, Jia Y, Chen G. et al. Biophysical properties and oxygenation potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins maintained in the tense and relaxed quaternary states. Tissue Eng Part A 2011; 17: 927-940
  • 64 Harrington JP, Wollocko H. Pre-clinical studies using OxyVita hemoglobin, a zero-linked polymeric hemoglobin: A review. J Artif Organs 2010; 13: 183-188
  • 65 DʼAgnillo F, Chang TMS. Polyhemoglobin-superoxide dismutase catalase as a blood substitute with antioxidant properties. Nat Biotechnol 1998; 16: 667-671
  • 66 Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalase-superoxide dismutase-carbonic anhydrase], after four weekly 5% blood volume top-loading followed by a challenge of 30% exchange transfusion. Artif Cells Nanomed Biotechnol 2018; 46: 1349-1363
  • 67 Barnikol WKR, Pötzschke H. Hämoglobin-Hyperpolymere, künstliche Sauerstoffträger eines neuen Typs – Konzept und aktueller Stand der Entwicklung. Anästhesiol Intensivmed Notfallmed Schmerzther 2005; 40: 46-58
  • 68 Chang TM. Semipermeable microcapsules. Science 1964; 146: 524-525
  • 69 Awasthi VD, Goins EA, Phillips WT. Liposome-encapsulated Hemoglobin. History, Preparation and Evaluation. In: Winslow R, ed. Blood Substitutes. Elsevier Ltd.; 2006: 501-513
  • 70 Sakai H, Sou K, Horinouchi H. et al. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs 2009; 33: 139-145
  • 71 Sakai H. Artificial Oxygen Carriers (Hemoglobin-vesicles) as a Transfusion Alternative and for Oxygen Therapeutics. IFMBE Proceedings. Berlin, Heidelberg: Springer; 2011: 845-848
  • 72 Azuma H, Fujihara M, Sakai H. Biocompatibility of HbV: Liposome-encapsulated hemoglobin molecules-liposome effects on immune function. J Funct Biomater 2017; 8: 24
  • 73 Ghirmai S, Bülow L, Sakai H. In vivo evaluation of electron mediators for the reduction of methemoglobin encapsulated in liposomes using electron energies produced by red blood cell glycolysis. Artif Cells Nanomed Biotechnol 2018; 46: 1364-1372
  • 74 Alomari E, Ronda L, Bruno S. et al. High- and low-affinity PEGylated hemoglobin-based oxygen carriers: Differential oxidative stress in a Guinea pig transfusion model. Free Radic Biol Med 2018; 124: 299-310
  • 75 Garay RP, El-Gewely R, Armstrong JK. et al. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 2012; 9: 1319-1323
  • 76 Abu Lila AS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J Control Release 2013; 172: 38-47
  • 77 Zhang P, Sun F, Liu S. et al. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J Control Release 2016; 244: 184-193
  • 78 Thi TTH, Pilkington EH, Nguyen DH. et al. The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12: 298
  • 79 Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997; 277: 1232-1237
  • 80 Bäumler H, Artmann G, Voigt A. et al. Plastic behaviour of polyelectrolyte microcapsules derived from colloid templates. J Microencapsul 2000; 17: 651-655
  • 81 Georgieva R, Moya S, Hin M. et al. Permeation of macromolecules into polyelectrolyte microcapsules. Biomacromolecules 2002; 3: 517-524
  • 82 Georgieva R, Moya S, Donath E. et al. Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir 2004; 20: 1895-1900
  • 83 Bäumler H, Kelemen C, Mitlöhner R, Georgieva R, Krabi A, Schäling S, Artmann G, Kiesewetter H. Micromechanical Properties of newly Developed Polyelectrolyte Microcapsules (PEMC). In: Artificial Oxygen Carrier. Kobayashi K, Tsuchida E, Horinouchi H. eds. Keio University International Symposium for Life Sciences and Medicine Vol. 12. Tokyo: Springer; 2005: 205-216
  • 84 Guo J, Agola JO, Serda R. et al. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano 2020; 14: 7847-7859
  • 85 Bäumler H, Georgieva R. Coupled enzyme reactions in multicompartment microparticles. Biomacromolecules 2010; 11: 1480-1487
  • 86 Xiong Y. Herstellung von Mikropartikeln zum Sauerstofftransport auf Hämoglobinbasis [Dissertation]. Berlin: Freie Universität Berlin; 2012
  • 87 Xiong Y, Steffen A, Andreas K. et al. Hemoglobin-based oxygen carrier microparticles: Synthesis, properties, and in vitro and in vivo investigations. Biomacromolecules 2012; 13: 3292-3300
  • 88 Xiong Y, Georgieva R, Steffen A. et al. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure. J Colloid Interface Sci 2018; 514: 156-164
  • 89 Kloypan C, Prapan A, Suwannasom N. et al. Improved oxygen storage capacity of haemoglobin submicron particles by one-pot formulation. Artif Cells Nanomed Biotechnol 2018; 46: S964-S972
  • 90 Kloypan C, Suwannasom N, Chaiwaree S. et al. In-vitro haemocompatibility of dextran-protein submicron particles. Artif Cells Nanomed Biotechnol 2019; 47: 241-249
  • 91 Xiong Y, Liu ZZ, Georgieva R. et al. Nonvasoconstrictive hemoglobin particles as oxygen carriers. ACS Nano 2013; 7: 7454-7461
  • 92 Bäumler H, Xiong Y, Liu ZZ. et al. Novel hemoglobin particles–promising new-generation hemoglobin-based oxygen carriers. Artif Organs 2014; 38: 708-714
  • 93 Kao I, Xiong Y, Steffen A. et al. Preclinical in vitro safety investigations of submicron sized hemoglobin based oxygen carrier HbMP-700. Artif Organs 2018; 42: 549-559
  • 94 Cooper CE, Silkstone GGA, Simons M. et al. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute. Free Radic Biol Med 2019; 134: 106-118
  • 95 Bian Y, Chang TMS. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artif Cells Nanomed Biotechnol 2015; 43: 1-9
  • 96 Jahr JS, Sadighi Akha A, Holtby RJ. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: Clinical safety and efficacy of recent and current products. Curr Drug Discov Technol 2012; 9: 158-165
  • 97 Wolf F, White S. Zur in vivo-Messung der Erythrozyten-Lebensdauer mittels der 51Cr-Methode bei Gesunden und Kranken. In: Fellinger K, Höfer R. Radioaktive Isotope in Klinik und Forschung. München: Urban & Schwarzenberg; 1959: 169
  • 98 Delanghe JR, Langlois MR. Hemopexin: A review of biological aspects and the role in laboratory medicine. Clin Chim Acta 2001; 312: 13-23
  • 99 Elmer J, Alam HB, Wilcox SR. Hemoglobin-based oxygen carriers for hemorrhagic shock. Resuscitation 2012; 83: 285-292
  • 100 Schaer DJ, Schaer CA, Buehler PW. et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 2006; 107: 373-380
  • 101 Buehler PW, Vallelian F, Mikolajczyk MG. et al. Structural stabilization in tetrameric or polymeric hemoglobin determines its interaction with endogenous antioxidant scavenger pathways. Antioxid Redox Signal 2008; 10: 1449-1462
  • 102 Baek JH, Zhou Y, Harris DR. et al. Down selection of polymerized bovine hemoglobins for use as oxygen releasing therapeutics in a Guinea pig model. Toxicol Sci 2012; 127: 567-581
  • 103 Schaer DJ, Vinchi F, Ingoglia G. et al. Haptoglobin, hemopexin and related defense pathways-basic science, clinical perspectives and drug development. Front Physiol 2014; 5: 415
  • 104 Prapan A, Suwannasom N, Kloypan C. et al. Surface modification of hemoglobin-based oxygen carriers reduces recognition by haptoglobin, immunoglobulin, and hemoglobin antibodies. Coatings 2019; 9: 454