Subscribe to RSS
DOI: 10.1055/a-0842-6778
Entwicklung von cGMP-Analoga zur pharmakologischen Behandlung von neurodegenerativen Netzhauterkrankungen
Development of cGMP Analogues for the Pharmacological Treatment of Neurodegenerative Diseases of the RetinaPublication History
eingereicht 06 November 2018
akzeptiert 25 January 2019
Publication Date:
21 March 2019 (online)
Zusammenfassung
Erbliche Netzhautdegenerationen sind Erkrankungen der Photorezeptoren und/oder des Pigmentepithels, die zu einem weitgehenden Sehverlust bis hin zur vollständigen Erblindung führen. Bis heute sind diese seltenen Erkrankungen der Netzhaut zumeist nicht behandelbar und stellen eine erhebliche Belastung für die Betroffenen und ihre Angehörigen dar. Dieser Übersichtsartikel zeigt einige der Herausforderungen auf, die bei der Entwicklung von neuen Therapien für erbliche Netzhautdegenerationen auftreten, insbesondere wird auf das Problem der enormen genetischen Heterogenität dieser Erkrankungen eingegangen und die Frage, wie neue Behandlungsformen über die Blut-Netzhaut-Schranke zu den Nervenzellen der Netzhaut gebracht werden können. In diesem Rahmen wird die zentrale Rolle des Botenstoffs zyklisches Guanosinmonophosphat (cGMP) im Photorezeptor erklärt und wie dessen Funktion genutzt werden kann, um mutationsunabhängige Therapien zu entwickeln. Dies wird am Beispiel des DRUGSFORD-Projektes weiter ausgeführt, wobei auch darauf eingegangen wird, wie neue Medikamente formuliert werden können, um die Blut-Netzhaut-Schranke zu überwinden. Darüber hinaus werden weitere Schwierigkeiten diskutiert, die entstehen, wenn positive Ergebnisse aus der anwendungsbezogenen Forschung in die klinische Entwicklung überführt werden sollen. Hier wird zum einen auf Lücken und mangelnde Interdisziplinarität in der Ausbildung von Naturwissenschaftlern und Medizinern hingewiesen, zum anderen behindert aber auch das Fehlen von Verlaufsdaten und geeigneten Biomarkern die klinische Entwicklung.
Abstract
Hereditary retinal degenerative diseases are mostly diseases of the photoreceptors and/or the retinal pigment epithelium, which lead to loss of vision or even complete blindness. To this day, these diseases are mostly untreatable and represent a considerable burden for patients and their relatives. This review article highlights some of the challenges that arise in the development of new therapies for inherited retinal degeneration, in particular the problem of the enormous genetic heterogeneity of these diseases and the question of how new forms of treatment can be made to cross the blood retinal barrier to the nerve cells of the retina. In this context, the central role of the messenger substance cyclic guanosine mono-phosphate (cGMP) in the photoreceptor is discussed and how this can be used to develop mutation-independent therapies. The DRUGSFORD project will be used as an example to explain how new drugs can be formulated to overcome the blood retinal barrier. In addition, other difficulties will be discussed that arise when positive results from applied research are to be transferred into clinical development. On the one hand, gaps and a lack of interdisciplinarity in the training of scientists and physicians are pointed out; on the other hand, lack of robust data on the natural progression of these disorders and suitable biomarkers also impede clinical development.
-
Literatur
- 1 Chizzolini M, Galan A, Milan E. et al. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics 2011; 12: 260-266 doi:10.2174/138920211795860071
- 2 Rahi JS, Cable N. British Childhood Visual Impairment Study Group. Severe visual impairment and blindness in children in the UK. Lancet 2003; 362: 1359-1365 doi:10.1016/S0140-6736(03)14631-4
- 3 Mowat FM, Gervais KJ, Occelli LM. et al. Early-onset progressive degeneration of the area centralis in RPE65-deficient dogs. Invest Ophthalmol Vis Sci 2017; 58: 3268-3277 doi:10.1167/iovs.17-21930
- 4 Lorenz B, Gyurus P, Preising M. et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 2000; 41: 2735-2742
- 5 Trifunovic D, Sahaboglu A, Kaur J. et al. Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr Mol Med 2012; 12: 598-612
- 6 Verbakel SK, van Huet RAC, Boon CJF. et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66: 157-186 doi:10.1016/j.preteyeres.2018.03.005
- 7 Gaillard PJ, Visser CC, Appeldoorn CC. et al. Targeted blood-to-brain drug delivery – 10 key development criteria. Curr Pharm Biotechnol 2012; 13: 2328-2339
- 8 Ranta VP, Mannermaa E, Lummepuro K. et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release 2010; 148: 42-48 doi:10.1016/j.jconrel.2010.08.028
- 9 Kahle NA, Peters T, Zobor D. et al. Development of methodology and study protocol: safety and efficacy of a single subretinal injection of rAAV.hCNGA3 in patients with CNGA3-linked achromatopsia investigated in an exploratory dose-escalation trial. Hum Gene Ther Clin Dev 2018; 29: 121-131 doi:10.1089/humc.2018.088
- 10 Kitiratschky VB, Stingl K, Wilhelm B. et al. Safety evaluation of “retina implant alpha IMS” – a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2015; 253: 381-387 doi:10.1007/s00417-014-2797-x
- 11 Wilke R, Finger R. [Editorial: real-life data of anti-VEGF therapy]. Klin Monatsbl Augenheilkd 2017; 234: 1449-1450 doi:10.1055/s-0043-111255
- 12 Linz K, Auffarth GU, Kretz FT. [Binocular fluocinolone acetonide intravitreal implant for therapy-resistant diabetic maculopathy]. Klin Monatsbl Augenheilkd 2015; 232: 1208-1212 doi:10.1055/s-0034-1396318
- 13 Olanow CW. A radical hypothesis for neurodegeneration. Trends Neurosci 1993; 16: 439-444
- 14 Chatzinoff A, Nelson E, Stahl N. et al. Eleven-CIS vitamin A in the treatment of retinitis pigmentosa. A negative study. Arch Ophthalmol 1968; 80: 417-419
- 15 Berson EL, Rosner B, Sandberg MA. et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 2010; 128: 403-411 doi:10.1001/archophthalmol.2010.32
- 16 Tam BM, Noorwez SM, Kaushal S. et al. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. J Neurosci 2014; 34: 13336-13348 doi:10.1523/JNEUROSCI.1655-14.2014
- 17 LaVail MM, Yasumura D, Matthes MT. et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998; 39: 592-602
- 18 Kauper K, McGovern C, Sherman S. et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci 2012; 53: 7484-7491 doi:10.1167/iovs.12-9970
- 19 Vyslouzilova L, Buzgo M, Pokorny P. et al. Needleless coaxial electrospinning: a novel approach to mass production of coaxial nanofibers. Int J Pharm 2017; 516: 293-300 doi:10.1016/j.ijpharm.2016.11.034
- 20 Maussang D, Rip J, van Kregten J. et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol 2016; 20: 59-69 doi:10.1016/j.ddtec.2016.09.003
- 21 Campbell M, Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 2012; 763: 70-84
- 22 Rip J, Chen L, Hartman R. et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 2014; 22: 460-467 doi:10.3109/1061186X.2014.888070
- 23 Loftsson T, Hreinsdottir D, Stefansson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol 2007; 59: 629-635 doi:10.1211/jpp.59.5.0002
- 24 Meyer CH, Krohne TU, Charbel IP. et al. Routes for drug delivery to the eye and retina: intravitreal injections. Dev Ophthalmol 2016; 55: 63-70 doi:10.1159/000431143
- 25 Dalke C, Graw J. Mouse mutants as models for congenital retinal disorders. Exp Eye Res 2005; 81: 503-512
- 26 Keeler CE. The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci U S A 1924; 10: 329-333
- 27 Paquet-Durand F, Hauck SM, van Veen T. et al. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 2009; 108: 796-810
- 28 Sanyal S, Jansen HG. Absence of receptor outer segments in the retina of rds mutant mice. Neurosci Lett 1981; 21: 23-26
- 29 Gargini C, Terzibasi E, Mazzoni F. et al. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 2007; 500: 222-238
- 30 Arango-Gonzalez B, Trifunovic D, Sahaboglu A. et al. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration. PLoS One 2014; 9: e112142
- 31 Vighi E, Trifunovic D, Veiga-Crespo P. et al. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc Natl Acad Sci U S A 2018; 115: E2997-E3006 doi:10.1073/pnas.1718792115
- 32 Sanyal S, Hawkins RK. Genetic interaction in the retinal degeneration of mice. Exp Eye Res 1981; 33: 213-222
- 33 Chang B, Hawes NL, Pardue MT. et al. Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res 2007; 47: 624-633