Subscribe to RSS
DOI: 10.1055/a-0829-6828
Analysis of Inherited Optic Neuropathies
Analyse der hereditären OptikusneuropathienPublication History
received 21 September 2018
accepted 19 December 2018
Publication Date:
04 March 2019 (online)

Abstract
Background Inherited optic neuropathies (IONs) cover a spectrum of clinically and genetically heterogenic conditions. Genetic evaluation of patients with IONs may enable their better clinico-diagnostic assessment and management of the disease. The aim of the present study was to determine the genetic condition related to the phenotype in patients with diverse inherited optic neuropathies.
Patients and Methods A retrospective study was performed in 12 adults and 8 children of 8 non-related families. Clinical phenotyping, supported by color fundus, FAF, and OCT imaging, was performed. Genetic testing was obtained for all family members suspected for ION.
Results Identification of pathogenic mutations in eight non-related families helped to confirm the diagnosis of ION. Affected from ION were ten patients (eight adults and two children; four women and six men). Bilateral Leberʼs hereditary optic neuropathy (LHON) was linked to the m.11778G>A mutation in two families (two affected and five carriers). Secondary homoplasmic LHON mutations in MT-ND1 (m.4216T>C) and MT-CO3 genes (m.9804G>A) were confirmed in two families (each one subject, three eyes affected), without detection of a primary LHON mutation. One member presented a picture of right-sited optic neuropathy associated with a c.220C>G mutation in the ACO2 gene and a heterozygous c.185C>T mutation in the LDLR gene. Autosomal dominant optic atrophy was confirmed in three non-related families (five subjects with bilateral ION), where molecular genetic analyses confirmed four different heterozygous mutations in OPA1: c.1847+1G>T; c.2497-1G>A, 297A>G and c.(2983+1_2984-1)_(c.*3211) (2 splicing mutations, 1 missense mutation, and 1 gross deletion encompassing exons 30 and 31).
Conclusions Combining clinics and molecular genetics when evaluating patients with IONs helps in characterizing disease and, therefore, is strongly recommended for such patients.
Zusammenfassung
Hintergrund Hereditäre Optikusneuropathien umfassen ein breites Spektrum von klinisch und genetisch heterogenen Krankheitsbildern. Die genetische Untersuchung von Patienten mit hereditären Optikusneuropathien ist ein wichtiger Bestandteil zur Optimierung der klinischen und genetischen Krankheitsdiagnostik sowie entscheidender Punkt bei der Therapieplanung. Das Ziel dieser Studie ist eine Bestimmung von genetischen Pathologien, welche den möglichen klinischen Varianten der hereditären Optikusneuropathien zugeordnet werden können.
Patienten und Methodik Eine retrospektive Studie an 8 Kindern und 12 Erwachsenen aus 8 nicht miteinander verwandten betroffenen Familien. Der klinische Phänotyp wurde mithilfe einer klinischen Untersuchung sowie der Fundusautofluoreszenzaufnahmen, Farbfotodokumentation und OCT-Bildgebung bestimmt und mit der genetischen Abklärung aller teilnehmenden Familienmitglieder ergänzt.
Ergebnisse Die Identifikation von pathogenen Genmutationen wurde bei den Familienmitgliedern der 8 nicht miteinander verwandten Familien durchgeführt und konnte somit eine hereditäre Optikusneuropathie bestätigen. Die hereditäre Optikusneuropathie konnte bei insgesamt 10 Patienten (8 Erwachsenen und 2 Kindern, 6 Männern und 4 Frauen) bestätigt werden. Eine bilaterale LHON zeigte einen Zusammenhang mit einer m.11778G>A-Mutation in 2 Familien (2 betroffene Patienten und 5 Träger). Sekundäre homoplasmische LHON-Mutationen der MT-ND1-Gene (m.4216T>C) und MT-CO3-Gene (m.9804G>A) wurden in 2 Familien festgestellt (3 Augen von 2 betroffenen Patienten), ohne eine primäre LHON-Mutation zu identifizieren. Bei einem Mitglied der weiteren untersuchten Familie mit einer rechtsseitigen Optikusneuropathie konnten eine assoziierte c.220C>G-Mutation im ACO2-Gen und eine heterozygote c.185C>T-Mutation im LDLR-Gen bestätigt werden. Autosomal-dominante Optikusatrophie wurde in insgesamt 3 nicht miteinander verwandten Familien festgestellt (5 Patienten mit bilateraler Optikusneuropathie), welche die Assoziation mit 4 verschiedenen heterozygoten Mutationen im OPA1-Gen zeigte [c.1847+1G>T; c.2497-1G>A; c.297A>G and (c.2983+1_2984-1)_(c.*3211_?)].
Schlussfolgerungen Kombiniertes klinisches und genetisches Vorgehen bei Evaluation der Patienten mit hereditären Optikusneuropathien kann zur präzisen Krankheitsdiagnostik und deren Optimierung angewendet werden.
-
References
- 1 Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30: 81-114 doi:10.1016/j.preteyeres.2010.11.002
- 2 Leber T. Ueber hereditaere und congenital angelegte Sehnervenleiden. Albrecht Von Graefes Arch Ophthalmol 1871; 17: 249-291 doi:10.1007/BF01694557
- 3 Marsden CD, Lang AE, Quinn NP. et al. Familial dystonia and visual failure with striatal CT lucencies. J Neurol Neurosurg Psychiatry 1986; 49: 500-509
- 4 Amati-Bonneau P, Valentino ML, Reynier P. et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ʼplusʼ phenotypes. Brain 2008; 131: 338-351 doi:10.1093/brain/awm298
- 5 Ciafaloni E, Ricci E, Shanske S. et al. MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 1992; 31: 391-398 doi:10.1002/ana.410310408
- 6 Bindoff LA, Desnuelle C, Birch-Machin M. et al. Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): a clinical, biochemical and molecular study. J Neurol Sci 1991; 102: 17-24 doi:10.1016/0022-510X(91)90088-O
- 7 Hudson G, Schaefer AM, Taylor RW. et al. Mutation of the linker region of the polymerase-gamma-1 (POLG1) gene associated with progressive external ophthalmoplegia and parkinsonism. Arch Neurol 2007; 64: 553-557 doi:10.1001/archneur.64.4.553
- 8 Fortuna F, Barboni P, Liguori R. et al. Visual system involvement in patients with Friedreichʼs ataxia. Brain 2009; 132: 116-123 doi:10.1093/brain/awn269
- 9 Botsford B, Vuong LN, Hedges TR III. et al. Characterization of Charcot-Marie-Tooth optic neuropathy. J Neurol 2017; 264: 2431-2435 doi:10.1007/s00415-017-8645-2
- 10 Tranebjaerg L, Schwartz C, Eriksen H. et al. A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet 1995; 32: 257-263
- 11 Casari G, De Fusco M, Ciarmatori S. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93: 973-983 doi:10.1016/S0092-8674(00)81203-9
- 12 Cano A, Rouzier C, Monnot S. et al. Identification of novel mutations in WFS1 and genotype-phenotype correlation in Wolfram syndrome. Am J Med Genet 2007; 143 A: 1605-1612 doi:10.1002/ajmg.a.31809
- 13 Song YP, Chen ZS, Mo GY. et al. Optic atrophy differentially diagnosed as spinocerebellar ataxia from Leber hereditary optic neuropathy by gene mutation analysis. J Int Med Res 2012; 40: 2009-2013 doi:10.1177/030006051204000543
- 14 Winkelmann J, Lin L, Schormair B. et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 2012; 21: 2205-2210 doi:10.1093/hmg/dds035
- 15 Costeff H, Gadoth N, Apter N. et al. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 1989; 39: 595-597 doi:10.1212/WNL.39.4.595
- 16 Reynier P, Amati-Bonneau P, Verny C. et al. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J Med Genet 2004; 41: e110 doi:10.1136/jmg.2003.016576
- 17 Barboni P, Carbonelli M, Savini G. et al. OPA1 mutations associated with dominant optic atrophy influence optic nerve head size. Ophthalmology 2010; 117: 1547-1553 doi:10.1016/j.ophtha.2009.12.042
- 18 Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 2010; 55: 299-334 doi:10.1016/j.survophthal.2009.10.002
- 19 Howell N, Bindoff LA, McCullough DA. et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am J Hum Genet 1991; 49: 939-950
- 20 Huoponen K, Vilkki J, Aula P. et al. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am J Hum Genet 1991; 48: 1147-1153
- 21 Wallace DC, Singh G, Lott MT. et al. Mitochondrial DNA mutation associated with Leberʼs hereditary optic neuropathy. Science 1988; 242: 1427-1430 doi:10.1126/science.3201231
- 22 Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun 1992; 187: 1551-1557 doi:10.1016/0006-291X(92)90479-5
- 23 Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am J Hum Genet 1992; 51: 1218-1228
- 24 Carelli V, La Morgia C, Valentino ML. et al. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta 2009; 1787: 518-528 doi:10.1016/j.bbabio.2009.02.024
- 25 Kang L, Zheng HX, Zhang M. et al. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders. Sci Rep 2016; 6: 31083 doi:10.1038/srep31083
- 26 Savontaus ML. mtDNA mutations in Leberʼs hereditary optic neuropathy. Biochim Biophys Acta 1995; 1271: 261-263 doi:10.1016/0925-4439(95)00037-5
- 27 Matsumoto M, Hayasaka S, Kadoi C. et al. Secondary mutations of mitochondrial DNA in Japanese patients with Leberʼs hereditary optic neuropathy. Ophthalmic Genet 1999; 20: 153-160 doi:10.1076/opge.20.3.153.2281
- 28 Metodiev MD, Gerber S, Hubert L. et al. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J Med Genet 2014; 51: 834-838 doi:10.1136/jmedgenet-2014-102532
- 29 Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat 2005; 26: 550-556 doi:10.1002/humu.20256
- 30 Ferré M, Bonneau D, Milea D. et al. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations. Hum Mutat 2009; 30: E692-E705 doi:10.1002/humu.21025
- 31 Guy J, Feuer WJ, Porciatti V. et al. Retinal ganglion cell dysfunction in asymptomatic G11778A: Leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2014; 55: 841-848 doi:10.1167/iovs.13-13365
- 32 Hudson G, Yu-Wai-Man P, Chinnery PF. Leber hereditary optic neuropathy. Expert Opin Med Diagn 2008; 2: 789-799 doi:10.1517/17530059.2.7.789
- 33 Leo-Kottler B, Jägle H, Küpker T. et al. How to distinguish between autosomal dominant optic atrophy and Leberʼs hereditary optic neuropathy. Ophthalmologe 2007; 104: 1060-1065
- 34 Mackey DA, Oostra RJ, Rosenberg T. et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 1996; 59: 481-485
- 35 Mashima Y, Hiida Y, Oguchi Y. et al. High frequency of mutations at position 11778 in mitochondrial ND4 gene in Japanese families with Leberʼs hereditary optic neuropathy. Hum Genet 1993; 92: 101-102 doi:10.1007/BF00216156
- 36 Yen MY, Wang AG, Chang WL. et al. Leberʼs hereditary optic neuropathy – the spectrum of mitochondrial DNA mutations in Chinese patients. Jpn J Ophthalmol 2002; 46: 45-51
- 37 Kirkman MA, Yu-Wai-Man P, Korsten A. et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009; 132: 2317-2326 doi:10.1093/brain/awp158
- 38 Llòria X, Catarino C, Downes S. et al. Clinical experience with idebenone in the treatment of patients harbouring rare mutations related to Leberʼs hereditary optic neuropathy (LHON). Abstract presented at: European Association for Vision and Eye Research Conference, Sep 27 – 30, 2017 in Nice, France. doi:10.1111/j.1755-3768.2017.0T040
- 39 Giordano C, Montopoli M, Perli E. et al. Oestrogens ameliorate mitochondrial dysfunction in Leberʼs hereditary optic neuropathy. Brain 2011; 134: 220-234 doi:10.1093/brain/awq276
- 40 Man PY, Griffiths PG, Hudson G. et al. Inherited mitochondrial optic neuropathies. J Med Genet 2009; 46: 145-158 doi:10.1136/jmg.2007.054270
- 41 Guo DY, Wang XW, Hong N. et al. A meta-analysis of the association between different genotypes (G11778A, T14484C and G3460A) of Leber hereditary optic neuropathy and visual prognosis. Int J Ophthalmol 2016; 9: 1493-1498 doi:10.18240/ijo.2016.10.21
- 42 Harding AE, Sweeney MG, Govan GG. et al. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet 1995; 57: 77-86
- 43 Klopstock T, Yu-Wai-Man P, Dimitriadis K. et al. A randomized placebo-controlled trial of idebenone in Leberʼs hereditary optic neuropathy. Brain 2011; 134: 2677-2686 doi:10.1093/brain/awr170
- 44 Carelli V, La Morgia C, Valentino ML. et al. Idebenone treatment in Leberʼs hereditary optic neuropathy. (Letter to the Editor). Brain 2011; 134 (Pt 9): e188 doi:10.1093/brain/awr180
- 45 Pemp B, Kircher K, Reitner A. Idebenone treatment in patients with Leber hereditary optic neuropathy after disease onset of five to thirty years. Poster presented at: 13th Meeting of European Neuro-Ophthalmological-Society (EUNOS), 10 – 13 September 2017 in Budapest, Hungary. PA10.
- 46 Pemp B, Kircher K, Reitner A. Changes in visual acuity in patients with chronic Leber hereditary optic neuropathy (LHON) during treatment with Idebenone. Poster presented at: ARVO (The Association for Research in Vision and Ophthalmology) Annual Meeting, 29 Apr – 2 May 2018 in Honolulu, Havaii. Invest Ophthalmol Vis Sci 2018; 59: 3357
- 47 Wan X, Pei H, Zhao M. et al. Efficacy and Safety of rAAV2-ND4 Treatment for Leberʼs Hereditary Optic Neuropathy. Sci Rep 2016; 6: 21587
- 48 Maguire AM, Simonelli F, Pierce EA. et al. Safety and efficacy of gene transfer for Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2240-2248 doi:10.1056/NEJMoa0802315