Klin Monbl Augenheilkd 2019; 236(02): 142-144
DOI: 10.1055/a-0809-5692
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Die Bedeutung des lymphatischen und des glymphatischen Systems für das Glaukom

The Importance of the Lymphatic and the Glymphatic System for Glaucoma
Hanspeter Esriel Killer
Augenklinik, Kantonsspital Aarau, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht 12 November 2018

akzeptiert 26 November 2018

Publication Date:
14 February 2019 (online)

Zusammenfassung

Das Normaldruckglaukom ist eine Variante des Offenwinkelglaukoms, das durch einen normalen Augendruck charakterisiert ist. Obwohl verschiedene pathophysiologische Erklärungen existieren (vaskuläre Dysregulation, Rolle der Lamina cribrosa) kann keine Theorie die Pathophysiologie schlüssig erklären. Der Sehnerv ist ein weißer Hirnfaszikel. Er ist auf seiner ganzen Länge von Liquor cerebrospinalis umspült. Auf der Basis von neuroradiologischen Untersuchungen vermutet man, dass ein Normaldruckglaukom aufgrund eines neurodegenerativen Prozesses entstehen kann. Eine ungenügende Liquordynamik kann dabei eine Rolle spielen, indem toxische Substanzen wie Aβ-Lipoprotein insuffizient aus dem Liquor entfernt werden. Dabei kommt dem lymphatischen und glymphatischen System eine wesentliche Rolle zu.

Abstract

Normal tension glaucoma is a variant of primary open angle glaucoma. It is characterized by normal intraocular pressure. Although there are several pathophysiological explanations (e. g. vascular dysregulation, the role of the lamina cribrosa), none of these explanations can fully explain its pathophysiology. The optic nerve is a white matter tract of the brain. It is surrounded by cerebrospinal fluid on its whole length. Neuroradiological examinations hint at a neurodegenerative origin of normal tension glaucoma. Impaired cerebrospinal fluid dynamics and reduced clearance of Aβ amyloid might play a role in this process. The lymphatic and the glymphatic system are thought to be essentially involved.

 
  • Literatur

  • 1 Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond) 2018; 32: 924-930
  • 2 Leske MC, Hyman L, Hussein M. et al. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 1999; 127: 625-626
  • 3 Giorgio A, Zhang J, Costantino F. et al. Diffuse brain damage in normal tension glaucoma. Hum Brain Mapp 2018; 39: 532-541
  • 4 Lai SW, Lin CL, Liao KF. Glaucoma may be a non-memory manifestation of Alzheimerʼs disease in older people. Int Psychogeriatr 2017; 1-7 doi:10.1017/S1041610217000801
  • 5 Nuzzi R, Dallorto L, Rolle T. Changes of visual pathway and brain connectivity in glaucoma: a systematic review. Front Neurosci 2018; 12: 363
  • 6 Yücel Y. Central nervous system changes in glaucoma. J Glaucoma 2013; 22 (Suppl. 05) S24-S25
  • 7 Williams AL, Lackey J, Wizov SS. et al. Evidence for widespread structural brain changes in glaucoma: a preliminary voxel-based MRI study. Invest Ophthalmol Vis Sci 2013; 54: 5880-5887
  • 8 Danesh-Meyer HV, Levin LA. Glaucoma as a neurodegenerative disease. J Neuroophthalmol 2015; 35 (Suppl. 01) S22-S28
  • 9 Wostyn P, De Groot V, Van Dam D. et al. Glaucoma considered as an imbalance between production and clearance of neurotoxins. Invest Ophthalmol Vis Sci 2014; 55: 5351-5352
  • 10 Silverberg GD, Mayo M, Saul T. et al. Alzheimerʼs disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2: 506-511
  • 11 Brinker T, Stopa E, Morrison J. et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014; 11: 10
  • 12 Sokołowski W, Barszcz K, Kupczyńska M. et al. Lymphatic drainage of cerebrospinal fluid in mammals – are arachnoid granulations the main route of cerebrospinal fluid outflow?. Biologia (Bratisl) 2018; 73: 563-568
  • 13 Johnston M, Zakharov A, Papaiconomou C. et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 2004; 1: 2
  • 14 Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption?. Cerebrospinal Fluid Res 2005; 2: 6
  • 15 Biceroglu H, Albayram S, Ogullar S. et al. Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 2012; 16: 394-401
  • 16 Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8: 1434
  • 17 Nagra G, Koh L, Zakharov A. et al. Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1383-R1389
  • 18 Killer HE, Laeng HR, Groscurth P. Lymphatic capillaries in the meninges of the human optic nerve. J Neuroophthalmol 1999; 19: 222-228
  • 19 Killer HE, Jaggi GP, Miller NR. et al. Does immunohistochemistry allow easy detection of lymphatics in the optic nerve sheath?. J Histochem Cytochem 2008; 56: 1087-1092
  • 20 Iliff JJ, Wang M, Liao Y. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4: 147ra111 doi:10.1126/scitranslmed.3003748
  • 21 Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system?. Stroke 2013; 44 (6 Suppl. 1): S93-S95
  • 22 Xie L, Kang H, Xu Q. et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342: 373-377 doi:10.1126/science.1241224
  • 23 Kress BT, Iliff JJ, Xia M. et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014; 76: 845-861 doi:10.1002/ana.24271
  • 24 Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol 2007; 18: 110-114
  • 25 Daveckaite A, Grusauskiene E, Petrikonis K. et al. Cognitive functions and normal tension glaucoma. Indian J Ophthalmol 2017; 65: 974-978
  • 26 Mathieu E, Gupta N, Ahari A. et al. Evidence for cerebrospinal fluid entry into the optic nerve via a glymphatic pathway. Invest Ophthalmol Vis Sci 2017; 58: 4784-4791
  • 27 Wostyn P, De Groot V, Van Dam D. et al. The first histologic evidence of a paravascular pathway within the optic nerve. Invest Ophthalmol Vis Sci 2018; 59: 1717
  • 28 Wostyn P, De Groot V, Van Dam D. et al. Age-related macular degeneration, glaucoma and Alzheimerʼs disease: amyloidogenic diseases with the same glymphatic background?. Cell Mol Life Sci 2016; 73: 4299-4301
  • 29 Wostyn P, De Groot V, Van Dam D. et al. The glymphatic hypothesis of glaucoma: a unifying concept incorporating vascular, biomechanical, and biochemical aspects of the disease. Biomed Res Int 2017; 2017: 5123148
  • 30 Killer HE, Hou R, Wostyn P. et al. Pressure and velocity in intraocular and subarachnoid space fluid chambers: an inseparable couple. Eye (Lond) 2018; DOI: 10.1038/s41433-018-0231-z.
  • 31 McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA. et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 2002; 43: 1077-1087
  • 32 McKinnon SJ. Glaucoma: ocular Alzheimerʼs disease?. Front Biosci 2003; 8: s1140-s1156
  • 33 Guo L, Salt TE, Luong V. et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A 2007; 104: 13444-13449
  • 34 Ito Y, Shimazawa M, Tsuruma K. et al. Induction of amyloid-β (1–42) in the retina and optic nerve head of chronic ocular hypertensive monkeys. Mol Vis 2012; 18: 2647-2657