Der Nuklearmediziner 2019; 42(01): 15-20
DOI: 10.1055/a-0807-3523
Theranostik
© Georg Thieme Verlag KG Stuttgart · New York

124J/131J-Theranostik des Natrium-Iodid-Symporters beim Schilddrüsenkarzinom

124I/131I-Theranostics of Sodium-Iodine-Symporter in Thyroid Cancer
Michael C. Kreißl
1   Klinik für Radiologie und Nuklearmedizin, Bereich Nuklearmedizin, Universitätsklinikum Magdeburg, Deutschland
,
Walter Jentzen
2   Klinik für Nuklearmedizin, Universitätsklinikum Essen, Universität Duisburg Essen, Deutschland
,
Marcel Janssen
3   Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
,
Martin Gotthardt
3   Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
,
James Nagarajah
3   Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2019 (online)

Zusammenfassung

Eines der vielversprechendsten Konzepte in der Nuklearmedizin ist die Theranostik, die im Wesentlichen die Diagnostik und Therapie eines bestimmten Targets beinhaltet, insbesondere, wenn es darum geht, Krebstherapien zu optimieren und zu individualisieren. In der Nuklearmedizin werden Theranostika bereits seit über 60 Jahren in der klinischen Routine mit 131J/123J für diagnostische und therapeutische Zwecke bei Schilddrüsenerkrankungen eingesetzt. Dieser Artikel gibt einen kurzen Überblick über die Verwendung von 2 Radioiod-Isotopen (131J und 124J) für das Targeting des Natrium-Iodid-Symporters bei Schilddrüsenkarzinomen und nicht thyreoidalen Tumoren. Insbesondere wird die Rolle der 124J-basierten Dosimetrie diskutiert. Abschließend zeigen wir an einem Patientenbeispiel, wie die Expression des Natrium-Iodid-Symporters bei einem Patienten mit radioiod-refraktärem fortgeschrittenem Schilddrüsenkarzinom durch Medikamente manipuliert werden kann.

Abstract

One of the most promising concepts of nuclear medicine is theranostic that combines diagnostic and therapy with respect to specific targets. Using this approach, cancer therapies can be optimized and individualized. Theranostic concepts have been applied in nuclear medicine already for more than 60 years as part of clinical routine using 131I/123I for therapeutic and diagnostic purposes in thyroid disorders and thyroid cancer. This review provides a short overview over the application of two isotopes of radioiodine (131I and 124I) for targeting the sodium-iodine-symporter in thyroid cancer but also in other, non-thyroid carcinomas. In addition, the role of 124I dosimetry is discussed in detail. Furthermore, we show in a patient case, how sodium-iodine-symporter expression may be manipulated by using targeted drugs in radioiodine refractory advanced thyroid cancer.

 
  • Literatur

  • 1 Del Vecchio S, Zannetti A, Fonti R. et al. Nuclear imaging in cancer theranostics. Q J Nucl Med Mol Imaging 2007; 51: 152-163
  • 2 Freudenberg L, Jentzen W, Görges R. et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: Therapeutic impact. Nuklearmedizin Nuclear medicine 2007; 46: 121-128
  • 3 Van Nostrand D, Moreau S, Bandaru VV. et al. 124I Positron Emission Tomography Versus 131I Planar Imaging in the Identification of Residual Thyroid Tissue and/or Metastasis in Patients Who Have Well-Differentiated Thyroid Cancer. Thyroid 2010; 20: 879-883
  • 4 Maxon HR, Englaro EE, Thomas SR. et al. Radioiodine-131 Therapy for Well-Differentiated Thyroid Cancer A Quantitative Radiation Dosimetric Approach: Outcome and Validation in 85 Patients. The Journal of Nuclear Medicine 1992; 33: 1-5
  • 5 Jentzen W, Hoppenbrouwers J, van Leeuwen P. et al. Assessment of Lesion Response in the Initial Radioiodine Treatment of Differentiated Thyroid Cancer Using 124I PET Imaging. Journal of Nuclear Medicine 2014; 55: 1759-1765
  • 6 Jentzen W, Verschure F, van Zon A. et al. 124I PET Assessment of Response of Bone Metastases to Initial Radioiodine Treatment of Differentiated Thyroid Cancer. Journal of Nuclear Medicine 2016; 57: 1499-1504
  • 7 Jentzen W, Hoppenbrouwers J, van Leeuwen P. et al. Assessment of Lesion Response in the Initial Radioiodine Treatment of Differentiated Thyroid Cancer Using 124I PET Imaging. Journal of Nuclear Medicine 2014; 55: 1759-1765
  • 8 Sgouros G, Kolbert K, Sheikh A. et al. Patient-Specific Dosimetry for 131I Thyroid Cancer Therapy Using 124I PET and 3-Dimensional-Internal Dosimetry (3D-ID) Software. J Nucl Med 2004; 45: 1366-1372
  • 9 Jentzen W, Bockisch A, Ruhlmann M. Assessment of Simplified Blood Dose Protocols for the Estimation of the Maximum Tolerable Activity in Thyroid Cancer Patients Undergoing Radioiodine Therapy Using Iodine-124. Journal of Nuclear Medicine 2015; 56: 832-838
  • 10 Benua RS, Cicale NR, Sonenberg M. et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. American Journal of Radiology 1962; 87: 171-182
  • 11 Nagarajah J, Le M, Knauf JA. et al. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. J Clin Invest 2016; 126: 4119-4124
  • 12 Jentzen W, Freudenberg L, Eising EG. et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. Journal of Nuclear Medicine 2008; 49: 1017-1023
  • 13 Ho AL, Grewal RK, Leboeuf R. et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N Engl J Med 2013; 368: 623-632
  • 14 Wapnir IL, van de Rijn M, Nowels K. et al. Immunohistochemical Profile of the Sodium/Iodide Symporter in Thyroid, Breast, and Other Carcinomas Using High Density Tissue Microarrays and Conventional Sections. J Clin Endocrinol Metab 2003; 88: 1880-1888
  • 15 Micali S, Bulotta S, Puppin C. et al. Sodium iodide symporter (NIS) in extrathyroidalmalignancies: focus on breast and urologicalcancer. BMC Cancer 2014; 14: 1-12
  • 16 Wapnir IL, Goris ML, Yudd AP. et al. The Na+/I-Symporter Mediates Iodide Uptake in Breast Cancer Metastases and Can Be Selectively Down-Regulated in the Thyroid. Clin Cancer Res 2004; 10: 4294-4302
  • 17 Renier C, Do J, Reyna-Neyra A. et al. Regression of experimental NIS-expressing breast cancer brain metastases in response to radioiodide/gemcitabine dual therapy. Oncotarget 2016; 7: 54811-54824
  • 18 Kelkar MG, Senthilkumar K, Jadhav S. et al. Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation. Sci Rep 2016; 6: 19341