Ultraschall Med 2020; 41(03): 267-277
DOI: 10.1055/a-0805-1099
Review
© Georg Thieme Verlag KG Stuttgart · New York

Artifacts and Technical Restrictions in 2D Shear Wave Elastography

Artefakte und technische Einschränkungen bei der 2D-Scherwellen-Elastografie
Pierre Bouchet
1   Department of musculoskeletal imaging, CHU Besancon, besancon, France
,
Jean-Luc Gennisson
2   Paris Saclay University, Magnetic Resonance Imaging and Multi-modalities (IR4M), CNRS UMR8081, Orsay, France
,
Andrea Podda
1   Department of musculoskeletal imaging, CHU Besancon, besancon, France
,
Mona Alilet
1   Department of musculoskeletal imaging, CHU Besancon, besancon, France
,
Mathieu Carrié
1   Department of musculoskeletal imaging, CHU Besancon, besancon, France
,
Sébastien Aubry
1   Department of musculoskeletal imaging, CHU Besancon, besancon, France
› Author Affiliations
Further Information

Publication History

10 May 2018

10 November 2018

Publication Date:
21 December 2018 (online)

Abstract

2 D shear wave elastography (2D-SWE) is the latest evolution of elastography techniques and allows real-time quantitative assessment of the medium stiffness. The aim of this review is to identify, describe, explain and illustrate some technical restrictions and artifacts in 2D-SWE. Encountered artifacts and technical restrictions may be categorized according to acquisition technique, medium, or operator:

  • Acquisition technique: B-mode & SWE entanglement, transducer frequency, posterior elastographic shadowing artifact, mirrored elastogram artifact, “vertical striped” artifact, resolution limits in SWE, non-equivalence of elastographic devices

  • Medium: SWE in liquid medium, “black hole phenomenon”, pseudo-liquid lesions, musculotendinous anisotropy, intrinsic stiffness variations of tendons and muscles, depth of analysis, movement artifacts

  • Operator: Region of interest compression, acquisition and measurement parameters (ROI size, ROI location, elastogram acquisition time)

Clear knowledge of the underlying physical basis is necessary in 2D-SWE because radiologists have to deal with technical restrictions and a wide range of artifacts. Proper use of 2D-SWE ensures the reliability and reproducibility of the technique.

Zusammenfassung

Die 2D-Scherwellen-Elastografie (2D-SWE) ist die neueste Entwicklung in der Elastografie und ermöglicht die quantitative Beurteilung der mittleren Steifigkeit in Echtzeit. Das Ziel dieser Übersichtsarbeit ist die Erkennung, Beschreibung, Erklärung und anschauliche Darstellung einiger technischer Einschränkungen und Artefakte in der 2D-SWE. Die auftretenden Artefakte und technischen Einschränkungen können nach Aufnahmetechnik, Medium oder Anwender kategorisiert werden:

  • Aufnahmetechnik: B-Mode & SWE-Verschränkung, Frequenz des Schallkopfes, posteriores elastografisches Schattenartefakt, gespiegeltes Elastogramm-Artefakt, „vertikal gestreiftes“ Artefakt, Auflösungsgrenzen in der SWE, nicht äquivalente elastografische Geräte

  • Medium: SWE in flüssigem Medium, „Black-Hole-Phänomen“, pseudoflüssige Läsionen, muskulotendinöse Anisotropie, intrinsische Steifigkeitsschwankungen der Sehnen und Muskeln, Tiefe der Analyse, Bewegungsartefakte

  • Anwender: Parameter der Kompression, Erfassung und Messung der „region-of-interest“ (ROI-Größe, Position der ROI, Aufnahmedauer des Elastogramms)

In der 2D-SWE ist ein fundiertes Wissen über die physikalischen Grundlagen erforderlich, da sich Radiologen mit technischen Einschränkungen und einer Vielzahl von Artefakten auseinandersetzen müssen. Die korrekte Anwendung der 2D-SWE gewährleistet die Zuverlässigkeit und Reproduzierbarkeit dieser Technik.

 
  • References

  • 1 Bercoff J, Tanter M, Muller M. et al. The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrason Ferroelectr Freq Control 2004; Nov 5: 1523-1536
  • 2 Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2014; Jan 61: 102-119
  • 3 Tanter M, Bercoff J, Athanasiou A. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34: 1373-1386
  • 4 Deffieux T, Gennisson JL, Bercoff J. et al. On the effects of reflected waves in transient shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2011; 58: 2032-2035
  • 5 Zhang B, Ma X, Wu N. et al. Shear wave elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J Ultrasound Med 2013; 32: 2163-2169
  • 6 Deffieux T, Gennisson JL, Bousquet L. et al. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J Hepatol 2015; 62: 317-324
  • 7 Corréas JM, Tissier AM, Khairoune A. et al. Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging 2013; 94: 551-560
  • 8 Okasha HH, Mansour M, Attia KA. et al. Role of high resolution ultrasound/endosonography and elastography in predicting lymph node malignancy. Endosc Ultrasound 2014; 3: 58-62
  • 9 Aubry S, Nueffer JP, Tanter M. et al. Viscoelasticity in Achilles Tendonopathy: Quantitative Assessment by Using Real-time Shear-Wave Elastography. Radiology 2015; 274: 821-829
  • 10 Tanter M, Touboul D, Gennisson JL. et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imaging 2009; 28: 1881-1893
  • 11 Gennisson JL, Deffieux T, Fink M. et al. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013; 94: 487-495
  • 12 Bamber J, Cosgrove D, Dietrich C. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall in Med 2013; 34: 169-184
  • 13 Sigrist RMS, Liau J, Kaffas AE. et al. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017; 7: 1303-1329
  • 14 Brum J, Bernal M, Gennisson JL. et al. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol 2014; 59: 505-523
  • 15 Gennisson JL, Deffieux T, Macé E. et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36: 789-801
  • 16 Aubry S, Nueffer JP. A New Biomarker Coincident with Elastography: Viscosity Response. Radiology 2015; 275: 309
  • 17 Bernal M, Chamming's F, Couade M. et al. In Vivo Quantification of the Nonlinear Shear Modulus in Breast Lesions: Feasibility Study. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63: 101-109
  • 18 He XN, Diao XF, Lin HM. et al. Improved shear wave motion detection using coded excitation for transient elastography. Sci Rep 2017; 7: 44483
  • 19 Pengfei S, Heng Z, Urban MW. et al. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer. IEEE Trans Med Imaging 2013; 32: 2299-2310
  • 20 Barr RG, Nakashima K, Amy D. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol 2015; 41: 1148-1160
  • 21 Baad M, Lu ZF, Reiser I. et al. Clinical Significance of US Artifacts. Radiographics 2017; 37: 1408-1423
  • 22 Bruce M, Kolokythas O, Ferraioli G. et al. Limitations and artifacts in shear-wave elastography of the liver. Biomedical Engineering Letters 2017; 7: 81-89
  • 23 Lipman SL, Rouze NC, Palmeri ML. et al. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63: 1049-1063
  • 24 Lin CY, Chen PY, Shau YW. et al. An Artifact in Supersonic Shear Wave Elastography. Ultrasound Med Biol 2017; 43: 517-530
  • 25 Youk JH, Son EJ, Gweon HM. et al. Quantitative Lesion-to-Fat Elasticity Ratio Measured by Shear-Wave Elastography for Breast Mass: Which Area Should Be Selected as the Fat Reference? Tagliabue E, editor. PLoS ONE 2015; 10: e0138074
  • 26 Wu CH, Chen WS, Wang TG. Elasticity of the Coracohumeral Ligament in Patients with Adhesive Capsulitis of the Shoulder. Radiology 2016; 278: 458-464
  • 27 Hall TJ, Milkowski A, Garra B. et al. RSNA/QIBA: Shear wave speed as a biomarker for liver fibrosis staging. In Ultrasonics Symposium (IUS), 2013 IEEE International 2013; 21: 397-400
  • 28 Barr RG, Ferraioli G, Palmeri ML. et al. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2015; 845-861
  • 29 Franchi-Abella S, Elie C, Corréas JM. Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging 2013; 94: 497-501
  • 30 Ferraioli G, De Silvestri A, Lissandrin R. et al. Evaluation of Inter-System Variability in Liver Stiffness Measurements. Ultraschall in Med 2018; (EFirst). DOI: 10.1055/s-0043-124184.
  • 31 Piscaglia F, Salvatore V, Mulazzani L. et al. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage. Ultraschall in Med 2016; 37: 1-5
  • 32 Lee SH, Moon WK, Cho N. et al. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics. Invest Radiol 2014; 49: 147-155
  • 33 Barr RG. Shear wave imaging of the breast: still on the learning curve. J Ultrasound Med 2012; 31: 347-350
  • 34 Barr RG, Zhang Z. Shear-wave elastography of the breast: value of a quality measure and comparison with strain elastography. Radiology 2015; 275: 45-53
  • 35 Aubry S, Risson JR, Kastler A. et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 2013; 42: 1143-1150
  • 36 Hoffmeister BK, Handley SM, Wickline SA. et al. Ultrasonic determination of the anisotropy of Young's modulus of fixed tendon and fixed myocardium. J Acoust Soc Am 1996; 100: 3933-3940
  • 37 Aubry S, Nueffer JP, Carrié M. Evaluation of the Effect of an Anisotropic Medium on Shear Wave Velocities of Intra-Muscular Gelatinous Inclusions. Ultrasound Med Biol 2017; 43: 301-308
  • 38 Morrow DA, Haut DonahueTL, Odegard GM. et al. Transversely isotropic tensile material properties of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials 2010; 3: 124-129
  • 39 Fung YC, Skalak R. Biomechanics: Mechanical Properties of Living Tissues. Journal of Biomechanical Engineering 1981; 103: 231-298
  • 40 Aristizabal S, Amador C, Qiang B. et al. Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle. Phys Med Biol 2014; 59: 7735-7752
  • 41 Chatelin S, Gennisson JL, Bernal M. et al. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium. Phys Med Biol 2015; 60: 3639-3654
  • 42 Cortez CD, Hermitte L, Ramain A. et al. Ultrasound shear wave velocity in skeletal muscle: A reproducibility study. Diagn Interv Imaging 2016; 97: 71-79
  • 43 Domenichini R, Pialat JB, Podda A. et al. Ultrasound elastography in tendon pathology: state of the art. Skeletal Radiol 2017; 46: 1643-1655
  • 44 Aubry S, Risson JR, Barbier-Brion B. et al. Transient elastography of calcaneal tendon: preliminary results and future prospects. J Radiol 2011; 92: 421-427
  • 45 Berko NS, Mehta AK, Levin TL. et al. Effect of knee position on the ultrasound elastography appearance of the patellar tendon. Clinical radiology 2015; 70: 1083-1086
  • 46 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall in Med 2017; 38: e16-e47
  • 47 MacDonald D, Wan A, McPhee M. et al. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises. Ultrasound Med Biol 2016; 42: 1018-1025
  • 48 Ferraioli G, Filice C, Castera L. et al. WFUMB Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: Part 3: Liver. Ultrasound Med Biol 2015; 41: 1161-1179
  • 49 Gennisson JL, Rénier M, Catheline S. et al. Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force. Acoustical Society of America 2008; 122: 3211-3219
  • 50 Barr RG, Zhang Z. Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med 2012; 31: 895-902
  • 51 Kot BCW, Zhang ZJ, Lee AWC. et al. Elastic Modulus of Muscle and Tendon with Shear Wave Ultrasound Elastography: Variations with Different Technical Settings. Kellermayer MS, editor. PLoS ONE 2012; 7: e44348