Aktuelle Neurologie 2018; 45(10): 726-736
DOI: 10.1055/a-0740-3212
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Genetische Ursachen bei Dystonien

Genetic Causes of Dystonia
Anne Weissbach
Institut für Neurogenetik, Universität zu Lübeck, Lübeck
,
Katja Lohmann
Institut für Neurogenetik, Universität zu Lübeck, Lübeck
› Author Affiliations
Further Information

Publication History

Publication Date:
24 September 2018 (online)

Zusammenfassung

Dystonien sind eine klinisch und genetisch heterogene Gruppe von Bewegungsstörungen, bei denen es durch unwillkürliche, anhaltende oder intermittierende Muskelkontraktionen zu abnormen Bewegungen oder Haltungen kommt. Die Ursache einer Dystonie oder dystonen Bewegungsstörung bleibt zurzeit bei den meisten Patienten ungeklärt, doch scheinen genetische Faktoren eine große Rolle zu spielen. Zwar werden mehr und mehr Dystoniegene identifiziert (aktuell sind es bis zu 200 verschiedene), so sind diese doch nur für einige wenige und zum großen Teil sehr seltene Unterformen von Dystonien von Bedeutung. Dazu gehören v. a. die Dystonien, die früh, d. h. in der Kindheit oder Jugend beginnen und häufig auch mehrere Körperregionen betreffen. In der Vergangenheit wurden wiederholt mögliche gemeinsame Pathomechanismen der einzelnen genetischen Dystonien untersucht. Bis auf wenige Ausnahmen scheinen die kodierten Proteine aber dabei keinem gemeinsamen Wirkkreislauf anzugehören, sondern beeinflussen ganz unterschiedliche zelluläre Prozesse. Für die Mehrzahl der Dystonien mit bisher unbekannter Ursache wird eine Kombination aus verschiedenen genetischen und äußeren Einflüssen angenommen. Hier stellen wir die bekannten Dystoniegene vor, die v. a. bei isolierten (Dystonie als einzige Krankheitsmanifestation mit Ausnahme eines Tremors) oder kombinierten (Dystonie plus eine andere Bewegungsstörung wie Parkinson, Myoklonus oder Chorea) Dystonien relevant sind. Beispielhaft werden auch einige der Gene, die komplexe Dystonien verursachen, vorgestellt, bei denen, neben einer Dystonie, häufig auch eine Entwicklungsstörung oder Erkrankung anderer Organsysteme vorliegen. Abhängig von der klinischen Ausprägung der dystonen Symptome und weitestgehend unabhängig von genetischen Befunden kann die Dystonie auf eine orale Pharmakotherapie, intramuskuläre Botulinumtoxininjektionen oder eine tiefe Hirnstimulation ansprechen.

Abstract

Dystonia is a clinically and genetically heterogeneous movement disorder that is characterized by sustained or intermittent muscle contractions causing abnormal movements and/or postures. Although the cause of the disease remains unknown in most patients, genetic causes seem to play an important role. To date, mutations in more than 200 genes have been linked to dystonic phenotypes that often present rare and specific subforms of dystonia including early onset, generalized dystonia. Known dystonia genes encode proteins that affect mostly diverse cellular functions and a common molecular pathways of all monogenic dystonias has not (yet) been elucidated. The majority of dystonias seems to be caused by a combination of genetic and environmental factors. In this review, we will introduce several well-established dystonia genes for isolated dystonias (dystonia as the only movement disorder except for dystonic tremor) and combined dystonias (dystonia in combination with parkinsonsim, myoclonus, or chorea). Moreover, we will present selected genes that cause complex dystonias, in which dystonia is accompanied by non-neurological disorder and/or developmental delay. Therapeutic strategies include oral medication, botulinum toxin, and deep brain stimulation and depend on the patientsʼ needs. Notably, treatment outcome in dystonia is only slightly influenced by the genetic status.

 
  • Literatur

  • 1 Albanese A, Bhatia K, Bressman SB. et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013; 28: 863-873
  • 2 Marras C, Lang A, van de Warrenburg BP. et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31: 436-457
  • 3 Quartarone A, Hallett M. Emerging concepts in the physiological basis of dystonia. Mov. Disord 2013; 28: 958-967
  • 4 Steeves TD, Day L, Dykeman J. et al. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord 2012; 27: 1789-1796
  • 5 Ozelius LJ, Hewett JW, Page CE. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997; 17: 40-48
  • 6 Domingo A, Erro R, Lohmann K. Novel Dystonia Genes: Clues on disease mechanisms and the complexities of high-throughput sequencing. Mov Disord 2016; 31: 471-477
  • 7 Fuchs T, Gavarini S, Saunders-Pullman R. et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 2009; 41: 286-288
  • 8 Fuchs T, Saunders-Pullman R, Masuho I. et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet 2013; 45: 88-92
  • 9 Charlesworth G, Plagnol V, Holmstrom KM. et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet 2012; 91: 1041-1050
  • 10 Zech M, Boesch S, Maier EM. et al. Haploinsufficiency of KMT2B, encoding the lysine-specific histone methyltransferase 2B, results in early-onset generalized dystonia. Am J Hum Genet 2016; 99: 1377-1387
  • 11 Meyer E, Carss KJ, Rankin J. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2017; 49: 223-237
  • 12 Bressman SB, Sabatti C, Raymond D. et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology 2000; 54: 1746-1752
  • 13 Klein C, Marras C, Munchau A. Dystonia Overview. In: Pagon RA, Adam MP, Ardinger HH. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2018. 2003 Oct 28 [updated 2017 Jun 22]. PMID: 20301334
  • 14 Albanese A, Romito LM, Calandrella D. Therapeutic advances in dystonia. Mov Disord 2015; 30: 1547-1556
  • 15 Jinnah HA, Factor SA. Diagnosis and treatment of dystonia. Neurol Clin 2015; 33: 77-100
  • 16 Volkmann J, Wolters A, Kupsch A. et al. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol 2012; 11: 1029-1038
  • 17 Bruggemann N, Kuhn A, Schneider SA. et al. Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology 2015; 84: 895-903
  • 18 Vulinovic F, Lohmann K, Rakovic A. et al. Unraveling cellular phenotypes of novel TorsinA/TOR1A mutations. Hum Mutat 2014; 35: 1114-1122
  • 19 Morgante F, Klein C. Dystonia. Continuum (Minneap Minn) 2013; 19 (05) (Movement Disorders): 1225-1241
  • 20 Gavarini S, Cayrol C, Fuchs T. et al. Direct interaction between causative genes of DYT1 and DYT6 primary dystonia. Ann Neurol 2010; 68: 549-553
  • 21 Kaiser FJ, Osmanoric A, Rakovic A. et al. The dystonia gene DYT1 is repressed by the transcription factor THAP1 (DYT6). Ann Neurol 2010; 68: 554-559
  • 22 Bressman SB, Heiman GA, Nygaard TG. et al. A study of idiopathic torsion dystonia in a non-Jewish family: evidence for genetic heterogeneity. Neurology 1994; 44: 283-287
  • 23 Vemula SR, Puschmann A, Xiao J. et al. Role of Galpha(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet 2013; 22: 2510-2519
  • 24 Zech M, Gross N, Jochim A. et al. Rare sequence variants in ANO3 and GNAL in a primary torsion dystonia series and controls. Mov Disord 2014; 29: 143-147
  • 25 Zech M, Boesch S, Jochim A. et al. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord 2017; 32: 549-559
  • 26 Yoo D, Kim HJ, Lee JS. et al. Early-onset generalized dystonia starting in the lower extremities in a patient with a novel ANO3 variant. Parkinsonism Relat Disord 2018; 50: 124-125
  • 27 Ichinose H, Ohye T, Takahashi E. et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 1994; 8: 236-242
  • 28 de Carvalho Aguiar P, Sweadner KJ, Penniston JT. et al. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004; 43: 169-175
  • 29 Camargos S, Scholz S, Simon-Sanchez J. et al. DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol 2008; 7: 207-215
  • 30 Zimprich A, Grabowski M, Asmus F. et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet 2001; 29: 66-69
  • 31 Chen YZ, Matsushita MM, Robertson P. et al. Autosomal dominant familial dyskinesia and facial myokymia: single exome sequencing identifies a mutation in adenylyl cyclase 5. Arch Neurol 2012; 69: 630-635
  • 32 Bruggemann N, Stiller S, Tadic V. et al. Non-motor phenotype of dopa-responsive dystonia and quality of life assessment. Parkinsonism Relat Disord 2014; 20: 428-431
  • 33 Tadic V, Kasten M, Bruggemann N. et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol 2012; 69: 1558-1562
  • 34 Mencacci NE, Isaias IU, Reich MM. et al. Parkinsonʼs disease in GTP cyclohydrolase 1 mutation carriers. Brain 2014; 137: 2480-2492
  • 35 Weissbach A, Klein C. Hereditary dystonia and parkinsonism: two sides of the same coin?. Brain 2014; 137: 2402-2404
  • 36 Weissbach A, Baumer T, Bruggemann N. et al. Premotor-motor excitability is altered in dopa-responsive dystonia. Mov Disord 2015; 30: 1705-1709
  • 37 Brashear A, Dobyns WB, de Carvalho Aguiar P. et al. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007; 130: 828-835
  • 38 Sweney MT, Newcomb TM, Swoboda KJ. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52: 56-64
  • 39 Zech M, Castrop F, Schormair B. et al. DYT16 revisited: exome sequencing identifies PRKRA mutations in a European dystonia family. Mov Disord 2014; 29: 1504-1510
  • 40 Dos Santos CO, da Silva-Junior FP, Puga RD. et al. The prevalence of PRKRA mutations in idiopathic dystonia. Parkinsonism Relat Disord 2018; 48: 93-96
  • 41 Quadri M, Olgiati S, Sensi M. et al. PRKRA mutation causing early-onset generalized dystonia-parkinsonism (DYT16) in an Italian family. Mov Disord 2016; 31: 765-767
  • 42 Weissbach A, Kasten M, Grunewald A. et al. Prominent psychiatric comorbidity in the dominantly inherited movement disorder myoclonus-dystonia. Parkinsonism Relat Disord 2013; 19: 422-425
  • 43 Peall KJ, Waite AJ, Blake DJ. et al. Psychiatric disorders, myoclonus dystonia, and the epsilon-sarcoglycan gene: a systematic review. Mov Disord 2011; 26: 1939-1942
  • 44 Weissbach A, Werner E, Bally JF. et al. Alcohol improves cerebellar learning deficit in myoclonus-dystonia: a clinical and electrophysiological investigation. Ann Neurol 2017; 82: 543-553
  • 45 Asmus F, Hjermind LE, Dupont E. et al. Genomic deletion size at the epsilon-sarcoglycan locus determines the clinical phenotype. Brain 2007; 130: 2736-2745
  • 46 Grunewald A, Djarmati A, Lohmann-Hedrich K. et al. Myoclonus-dystonia: significance of large SGCE deletions. Hum Mutat 2008; 29: 331-332
  • 47 Mencacci NE, Rubio-Agusti I, Zdebik A. et al. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am J Hum Genet 2015; 96: 938-947
  • 48 Groen JL, Andrade A, Ritz K. et al. CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum Mol Genet 2015; 24: 987-993
  • 49 Groen JL, Ritz K, Jalalzadeh H. et al. RELN rare variants in myoclonus-dystonia. Mov Disord 2015; 30: 415-419
  • 50 Esapa CT, Waite A, Locke M. et al. SGCE missense mutations that cause myoclonus-dystonia syndrome impair epsilon-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Hum Mol Genet 2007; 16: 327-342
  • 51 Ritz K, van Schaik BD, Jakobs ME. et al. SGCE isoform characterization and expression in human brain: implications for myoclonus-dystonia pathogenesis?. Eur J Hum Genet 2011; 19: 438-444
  • 52 Xiao J, Vemula SR, Xue Y. et al. Role of major and brain-specific Sgce isoforms in the pathogenesis of myoclonus-dystonia syndrome. Neurobiol Dis 2017; 98: 52-65
  • 53 Nishiyama A, Endo T, Takeda S. et al. Identification and characterization of epsilon-sarcoglycans in the central nervous system. Brain Res Mol Brain Res 2004; 125: 1-12
  • 54 Rughani AI, Lozano AM. Surgical treatment of myoclonus dystonia syndrome. Mov Disord 2013; 28: 282-287
  • 55 Muller B, Hedrich K, Kock N. et al. Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. Am J Hum Genet 2002; 71: 1303-1311
  • 56 Tunc S, Bruggemann N, Baaske MK. et al. Facial twitches in ADCY5-associated disease - Myokymia or myoclonus? An electromyography study. Parkinsonism Relat. Disord 2017; 40: 73-75
  • 57 Chen YZ, Friedman JR, Chen DH. et al. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 2014; 75: 542-549
  • 58 Dy ME, Chang FC, Jesus SD. et al. Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol 2016; 31: 1027-1035
  • 59 Chang FC, Westenberger A, Dale RC. et al. Phenotypic insights into ADCY5-associated disease. Mov Disord 2016; 31: 1033-1040
  • 60 Ludwig MG, Seuwen K. Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J Recept Signal Transduct Res 2002; 22: 79-110
  • 61 Zech M, Jech R, Wagner M. et al. Molecular diversity of combined and complex dystonia: insights from diagnostic exome sequencing. Neurogenetics 2017; 18: 195-205
  • 62 Wilcox RA, Winkler S, Lohmann K. et al. Whispering dysphonia in an Australian family (DYT4): a clinical and genetic reappraisal. Mov Disord 2011; 26: 2404-2408
  • 63 Parker N. Hereditary whispering dysphonia. J Neurol Neurosurg Psychiatry 1985; 48: 218-224
  • 64 Hersheson J, Mencacci NE, Davis M. et al. Mutations in the autoregulatory domain of beta-tubulin 4a cause hereditary dystonia. Ann Neurol 2013; 73: 546-553
  • 65 Lohmann K, Wilcox RA, Winkler S. et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 2013; 73: 537-545
  • 66 Erro R, Hersheson J, Ganos C. et al. H-ABC syndrome and DYT4: variable expressivity or pleiotropy of TUBB4 mutations?. Mov Disord 2015; 30: 828-833
  • 67 Miyatake S, Osaka H, Shiina M. et al. Expanding the phenotypic spectrum of TUBB4A-associated hypomyelinating leukoencephalopathies. Neurology 2014; 82: 2230-2237
  • 68 Curiel J, Rodriguez Bey G, Takanohashi A. et al. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet 2017; 26: 4506-4518
  • 69 Nahhas N, Conant A, Hamilton E. et al. TUBB4A-Related Leukodystrophy. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2018. 2016 Nov 3. PMID: 27809427
  • 70 Leandro-Garcia LJ, Leskela S, Landa I. et al. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010; 67: 214-223
  • 71 Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009; 46: 73-80
  • 72 Haack TB, Hogarth P, Kruer MC. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012; 91: 1144-1149
  • 73 Kruer MC, Boddaert N, Schneider SA. et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 2012; 33: 407-414
  • 74 Gregory A, Kurian MA, Haack T. et al. Beta-Propeller Protein-Associated Neurodegeneration. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2018. 2017 Feb 16. PMID: 23687123
  • 75 Tuschl K, Clayton PT, Gospe Jr SM. et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 2012; 90: 457-466
  • 76 Quadri M, Federico A, Zhao T. et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet 2012; 90: 467-477
  • 77 Tuschl K, Mills PB, Parsons H. et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia--a new metabolic disorder. J Inherit Metab Dis 2008; 31: 151-163
  • 78 Zuccato C, Ciammola A, Rigamonti D. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntingtonʼs disease. Science 2001; 293: 493-498
  • 79 Sako W, Murakami N, Izumi Y. et al. Val66Met polymorphism of brain-derived neurotrophic factor is associated with idiopathic dystonia. J Clin Neurosci 2015; 22: 575-577
  • 80 Gomez-Garre P, Huertas-Fernandez I, Caceres-Redondo MT. et al. BDNF Val66Met polymorphism in primary adult-onset dystonia:a case-control study and meta-analysis. Mov Disord 2014; 29: 1083-1086
  • 81 Lohmann K, Schmidt A, Schillert A. et al. Genome-wide association study in musicianʼs dystonia: a risk variant at the arylsulfatase G locus?. Mov Disord 2014; 29: 921-927
  • 82 Mok KY, Schneider SA, Trabzuni D. et al. Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Mov Disord 2014; 29: 245-251
  • 83 Gomez-Garre P, Huertas-Fernandez I, Caceres-Redondo MT. et al. Lack of validation of variants associated with cervical dystonia risk: a GWAS replication study. Mov Disord 2014; 29: 1825-1828
  • 84 König IR, Fuchs O, Hansen G. et al. What is precision medicine?. Eur Respir J 2017; 50: pii: 1700391
  • 85 Grunewald A, Kasten M, Ziegler A. et al. Next-generation phenotyping using the parkin example: time to catch up with genetics. JAMA Neurol 2013; 70: 1186-1191
  • 86 Kasten M, Hartmann C, Hampf J. et al. Genotype-phenotype relations for the Parkinsonʼs Disease genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov Disord 2018; 33: 730-741
  • 87 Lill CM, Mashychev A, Hartmann C. et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord 2016; 31: 607-609
  • 88 Rittiner JE, Caffall ZF, Hernandez-Martinez R. et al. Functional genomic analyses of mendelian and sporadic disease identify impaired eIF2alpha signaling as a generalizable mechanism for dystonia. Neuron 2016; 92: 1238-1251
  • 89 Zakirova Z, Fanutza T, Bonet J. et al. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions. PLoS Genet 2018; 14: e1007169