CC BY-NC-ND 4.0 · World J Nucl Med 2021; 20(03): 228-236
DOI: 10.4103/wjnm.WJNM_91_20
Original Article

Correlation between imaging and tissue biomarkers of hypoxia in squamous cell cancer of the head and neck

Shreya Kunder
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Abhishek Chatterjee
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Subhakankha Manna
1   Mahimkar Lab, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Manoj Mahimkar
1   Mahimkar Lab, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Asawari Patil
2   Department of Pathology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Venkatesh Rangarajan
3   Department of Nuclear Medicine & Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Ashwini Budrukkar
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Sarbani Ghosh-Laskar
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Jai Prakash Agarwal
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
,
Tejpal Gupta
Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai
› Author Affiliations

Abstract

The aim of this study was to correlate endogenous tissue biomarkers of hypoxia with quantitative imaging parameters derived from 18F-fluoro-misonidazole (F-MISO) and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) and clinical outcomes in locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Tumor-tissue blocks of HNSCC patients with pretreatment F-MISO-PET/CT and FDG-PET/CT were de-archived for expression of hypoxia-inducible factor-1 alpha (HIF-1α) subunit, carbonic anhydrase-IX (CA-IX), and glucose transporter subunit-1 (GLUT-1) using immunohistochemistry (IHC). The intensity of staining was graded and correlated with quantitative imaging parameters and with disease-related outcomes. Tissue blocks were analyzed for 14 of 20 patients. On IHC, median H-scores for HIF-1α, CA-IX, and GLUT-1 were 130, 0, and 95, respectively. No significant correlation of tissue biomarkers of hypoxia with quantitative imaging parameters was found. However, borderline significant correlation was seen for H-scores of CA-IX with hypoxic tumor volume (HTV) (r = 0.873, P = 0.054) and fractional hypoxic volume (r = 0.824, P = 0.086) derived from F-MISO-PET/CT. At a median follow-up of 43 months, 5-year Kaplan–Meier estimates of locoregional control, disease-free survival, and overall survival were 53%, 43%, and 40%, respectively. Increased expression of HIF-1α or GLUT-1 (dichotomized by median H-scores) was not individually associated with disease-related outcomes. However, a combination of high HTV (>4.89cc) with above median H-scores of either HIF-1α (>130) and/or GLUT-1 (>95) was associated with worse clinical outcomes. None of the three patients with such “adverse hypoxic profile” were long-term survivors. There is no significant correlation of endogenous tissue biomarkers of hypoxia (HIF-1α, CA-IX, and GLUT-1) with quantitative imaging parameters (on F-MISO-PET/CT and FDG-PET/CT) or long-term outcomes in HNSCC. However, a combination of both can identify a subgroup of patients with adverse outcomes.

Financial support and sponsorship

All functional imagings as well as IHC for assessment of tissue biomarkers on the study were funded through competitive intramural research grants from Tata Memorial Centre, Mumbai, India. The sponsor, however, had no role in the study design, conduct, data collection, analysis, or reporting of results.




Publication History

Received: 04 July 2020

Accepted: 11 January 2021

Article published online:
24 March 2022

© 2021. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Pignon JP, le Maître A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92:4-14.
  • 2 Pfister DG, Spencer S, Brizel DM, Burtness B, Busse PM, Caudell JJ, et al. Head and neck cancers, Version 2.2014. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 2014;12:1454-87.
  • 3 Michiels S, Le Maître A, Buyse M, Burzykowski T, Maillard E, Bogaerts J, et al. Surrogate endpoints for overall survival in locally advanced head and neck cancer: Meta-analyses of individual patient data. Lancet Oncol 2009;10:341-50.
  • 4 Leeman JE, Li JG, Pei X, Venigalla P, Zumsteg ZS, Katsoulakis E, et al. Patterns of Treatment failure and postrecurrence outcomes among patients with locally advanced head and neck squamous cell carcinoma after chemoradiotherapy using modern radiation techniques. JAMA Oncol 2017;3:1487-94.
  • 5 Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1997;38:285-9.
  • 6 Hammond EM, Asselin MC, Forster D, O'Connor JP, Senra JM, Williams KJ. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 2014;26:277-88.
  • 7 Rajendran JG, Krohn KA. F-18 fluoromisonidazole for imaging tumor hypoxia: Imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 2015;45:151-62.
  • 8 Chirla R, Marcu LG. PET-based quantification of statistical properties of hypoxic tumor subvolumes in head and neck cancer. Phys Med 2016;32:23-35.
  • 9 Peterle GT, Maia LL, Trivilin LO, de Oliveira MM, Dos Santos JG, Mendes SO, et al. PAI-1, CAIX, and VEGFA expressions as prognosis markers in oral squamous cell carcinoma. J Oral Pathol Med 2018;47:566-74.
  • 10 Beasley NJ, Wykoff CC, Watson PH, Leek R, Turley H, Gatter K, et al. Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Res 2001;61:5262-7.
  • 11 Chatterjee A, Gupta T, Rangarajan V, Purandare N, Kunder S, Murthy V, et al. Optimal timing of fluorine-18-fluoromisonidazole positron emission tomography/computed tomography for assessment of tumor hypoxia in patients with head and neck squamous cell carcinoma. Nucl Med Commun 2018;39:859-64.
  • 12 Gupta T, Chatterjee A, Rangarajan V, Purandare N, Arya S, Murthy V, et al. Evaluation of quantitative imaging parameters in head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2019. DOI: 10.23736/S1824-4785.19.03179-0.
  • 13 Nandy S, Rajan MG, Korde A, Krishnamurthy NV. The possibility of a fully automated procedure for radiosynthesis of fluorine-18-labeled fluoromisonidazole using a simplified single, neutral alumina column purification procedure. Appl Radiat Isot 2010;68:1937-43.
  • 14 Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA, et al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol 2013;108:511-6.
  • 15 Calzada MJ, del Peso L. Hypoxia-inducible factors and cancer. Clin Transl Oncol 2007;9:278-89.
  • 16 Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, et al. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008;283:27799-809.
  • 17 Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757-63.
  • 18 Bhosale PG, Pandey M, Desai RS, Patil A, Kane S, Prabhash K, et al. Low prevalence of transcriptionally active human papilloma virus in Indian patients with HNSCC and leukoplakia. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:609-18.
  • 19 Minn H, Clavo AC, Wahl RL. Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: In vitro evaluation for PET imaging. Nucl Med Biol 1996;23:941-6.
  • 20 Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies. Biomed Res Int 2015;2015:549412.
  • 21 Nobre AR, Entenberg D, Wang Y, Condeelis J, Aguirre-Ghiso JA. The different routes to metastasis via hypoxia-regulated programs. Trends Cell Biol 2018;28:941-56.
  • 22 Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: A key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am J Physiol Cell Physiol 2015;309:C569-79.
  • 23 Swartz JE, Pothen AJ, Stegeman I, Willems SM, Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: A systematic review. Cancer Med 2015;4:1101-16.
  • 24 Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck-A systematic review and meta-analysis. Radiother Oncol 2011;100:22-32.
  • 25 Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res 2016;57:i90-8.
  • 26 Bittner MI, Wiedenmann N, Bucher S, Hentschel M, Mix M, Rücker G, et al. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy. Acta Oncol 2016;55:1299-304.
  • 27 Norikane T, Yamamoto Y, Maeda Y, Kudomi N, Matsunaga T, Haba R, et al. Correlation of(18) F-fluoromisonidazole PET findings with HIF-1α and p53 expressions in head and neck cancer: Comparison with(18) F-FDG PET. Nucl Med Commun 2014;35:30-5.
  • 28 Nicolay NH, Wiedenmann N, Mix M, Weber WA, Werner M, Grosu AL, et al. Correlative analyses between tissue-based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy-results from a prospective trial. Eur J Nucl Med Mol Imaging 2020;47:1046-55.
  • 29 Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 2017;124:533-40.
  • 30 Grillo F, Bruzzone M, Pigozzi S, Prosapio S, Migliora P, Fiocca R, et al. Immunohistochemistry on old archival paraffin blocks: Is there an expiry date? J Clin Pathol 2017;70:988-93.
  • 31 Bandurska-Luque A, Löck S, Haase R, Richter C, Zöphel K, Perrin R, et al. Correlation between FMISO-PET based hypoxia in the primary tumour and in lymph node metastases in locally advanced HNSCC patients. Clin Transl Radiat Oncol 2019;15:108-12.
  • 32 Marcu LG, Harriss-Phillips WM, Filip SM. Hypoxia in head and neck cancer in theory and practice: A PET-based imaging approach. Comput Math Methods Med 2014;2014:624642.
  • 33 Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015;112:238-50.
  • 34 Lapi SE, Lewis JS, Dehdashti F. Evaluation of Hypoxia with Cu-ATSM. Semin Nucl Med 2015;45:177-85.
  • 35 Hypoxia-based Dose Escalation with Radiochemotherapy in Head and Neck Cancer - Full Text View - ClinicalTrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02352792..[Last accessed on 2020 Feb 05].
  • 36 Pigorsch SU, Wilkens JJ, Kampfer S, Kehl V, Hapfelmeier A, Schläger C, et al. Do selective radiation dose escalation and tumour hypoxia status impact the loco-regional tumour control after radio-chemotherapy of head & neck tumours? The ESCALOX protocol. Radiat Oncol 2017;12:45.
  • 37 Rischin D, Peters LJ, O'Sullivan B, Giralt J, Fisher R, Yuen K, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): A phase III trial of the trans-tasman radiation oncology group. J Clin Oncol 2010;28:2989-95.
  • 38 Saksø M, Primdahl H, Johansen J, Nowicka-Matus K, Overgaard J. On behalf of DAHANCA. DAHANCA 33: Functional image-guided dose-escalated radiotherapy to patients with hypoxic squamous cell carcinoma of the head and neck (NCT02976051). Acta Oncol 2020;59:208-11.
  • 39 Harada H, Itasaka S, Zhu Y, Zeng L, Xie X, Morinibu A, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer. 2009;100:747-57.
  • 40 A Pilot Trial of Oral Topotecan for the Treatment of Refractory Advanced Solid Neoplasms Expressing HIF-1a - Full Text View - ClinicalTrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT00117013..[Last accessed on 2020 Feb 05].