Subscribe to RSS
DOI: 10.3414/ME9210
Reproducible Extraction of Local and Global Parameters for Functional Analysis of the Left Ventricle in 4D MR Image Data
Publication History
18 February 2009
Publication Date:
17 January 2018 (online)
Summary
Objectives: Left ventricle (LV) segmentation is required to quantify LV volume and mass parameters. Therefore, spatiotemporal Cine MR sequences in the short and long axis of the heart are acquired. Generally, LV segmentation methods consider short-axis sequences only. The reduced resolution in long-axis direction is one of the main reasons for inaccurate parameter extraction in the apical and basal area. The segmentation approach presented combines short- and long-axis information as well as motion tracking to enable the functional LV analysis in 4D MR Image Data.
Methods: First, anatomical landmarks like the mitral valve and the apex are defined in long-axis views in diastolic and systolic phase in order to specify the upper and lower boundary of the LV. Second, motion field approximation using non-linear registration enables the automatic contour propagation to all time points. Third, intersection planes are defined parallel to the mitral valve plane covering the whole ventricle. Finally, the 4D LV surface model is generated appending all in-plane contours. The segmentation results in short-axis images are checked and adjusted interactively and quantitative parameters are extracted.
Results: For evaluation the contours of 19 different datasets were traced by two medical experts using a contour drawing tool and the new segmentation tool. The results were compared to evaluate automatic contour propagation, robustness of the segmentation as well as interaction time.
Conclusion: The automatic contour propagation enables the fast and reproducible generation of a 4D model for the functional analysis of the heart. The interaction time is decreased from approx. 60 minutes to 10 minutes per case. Inter- and intraobserver differences of the extracted parameters are decreased significantly.
-
References
- 1 Jackson BM, Gorman JH, Salgo IS, Moainie SL, Plappert T, John-Sutton MS, Edmunds LH, Gorman RC. Border zone geometry increases wall stress after myocardial infarction: contrast echocardio-graphic assessment. Am J Physiol Heart Circ Physiol 2003; 284 (02) H475-H479.
- 2 Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A. Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 1993; 187: 261-268.
- 3 Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2000; 2 (04) 271-278.
- 4 Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003; 17 (03) 323-329.
- 5 Young A, Cowan B, Schoenberg S, Wintersperger B. Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis. Journal of Cardiovascular Magnetic Resonance 2008; 10: 24.
- 6 Rueckert D, Burger P. Shape-based segmentation and tracking in 4D cardiac MR images. In: CVRMed. 1997. pp 43-52.
- 7 Spreeuwers LJ, Breeuwer M. Myocardial boundary extraction using coupled active contours. In: Computers in Cardiology. 2003. pp 745-748.
- 8 Goshtasby AA, Turner DA. Fusion of short-axis and long-axis cardiac MR images. Comput Med Imaging Graph 1996; 20 (02) 77-87.
- 9 van Geuns RJM, Baks T, Gronenschild EHBM, Aben JPMM, Wielopolski PA, Cademartiri F, de Feyter PJ. Automatic quantitative left ventricular analysis of cine MR images by using three-dimensional information for contour detection. Radiology 2006; 240: 215-221.
- 10 Uzumcu M, van der Geest RJ, Swingen C, Reiber JHC, Lelieveldt BPF. Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Invest Radiol 2006; 41: 52-62.
- 11 Hautvast G, Lobregt S, Breeuwer M, Gerritsen F. Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging 2006; 25 (11) 1472-1482.
- 12 Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, Magnin IE. A review of cardiac image registration methods. IEEE Trans Med Imaging 2002; 21 (09) 1011-1021.
- 13 Frangi AF, Niessen WJ, Viergever MA. Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 2001; 20: 2-25. 13.
- 14 Gallippi CM, Trahey GE. Automatic image registration for MR and ultrasound cardiac images. In: IPMI ’01: Proceedings of the 17th International Conference on Information Processing in Medical Imaging. London, UK: Springer-Verlag; 2001. pp 148-154.
- 15 Carrillo A, Duerk JL, Lewin JS, Wilson DL. Semiautomatic 3-D image registration as applied to interventional MRI liver cancer treatment. IEEE Trans Med Imaging 2000; 19 (03) 175-185.
- 16 McEachen JC, Duncan JS. Shape-based tracking of left ventricular wall motion. MedImg 1997; 16 (03) 270-283.
- 17 Pallotta S, Gilardi M, Bettinardi V, Rizzo G, Landoni C. Application of a surface matching image registration technique to the correlation of cardiac studies in positron emission tomography (PET) by transmission images. Physics in Medicine and Biology 1995; 40 (10) 1695-1708.
- 18 Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002; 105 (02) 162-167.
- 19 Papademetris X, Sinusas AJ, Dione DP, Duncan JS. Estimation of 3D left ventricular deformation from echocardiography. Med Image Anal 2001; 5: 17-28.
- 20 Nelson TR, Pretorius DH. Three-dimensional ultrasound imaging. Ultrasound Med Biol 1998; 24 (09) 1243-1270.
- 21 Chandrashekara R, Mohiaddin RH, Rueckert D. Cardiac motion tracking in tagged MR images using a 4D B-spline motion model and nonrigid image registration. In: In Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Arlington, VA, USA: April 15-18, 2004. pp 468-471.
- 22 Huang J, Abendschein D, D’avila-Román VG, Amini AA. Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI. IEEE Trans Med Imaging 1999; 18 (10) 957-972.
- 23 Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 1998; 2 (03) 243-260.
- 24 Perperidis D, Mohiaddin R, Rueckert D. Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Assist Interv 2005; 8 Pt 2 402-410.
- 25 Ehrhardt J, Säring D, Handels H. Structure-preserving Interpolation of Temporal and Spatial Image Sequences using an Optical Flow-based Method. Methods Inf Med 2007; 46: 300-307.
- 26 Handels H, Werner R, Frenzel T, Saering D, Lu W, Low D, Ehrhardt J. 4D medical image computing and visualization of lung tumor mobility in spatio-temporal CT image data. International Journal of Medical Informatics 2007; 67: 433-439.
- 27 Säring D, Ehrhardt J, Stork A, Bansmann PM, Lund G, Handels H. Analysis of the left ventricle after myocardial infarction combining 4D Cine-MR and 3D DE-MR image sequences. In: Bildverarbeitung für die Medizin;. 2006. pp 56-60.
- 28 Handels H, Werner R, Frenzel T, Säring D, Lu W, Low D, Ehrhardt J. Generation of 4D CT image data and analysis of lung tumour mobility during the breathing cycle. Stud Health Technol Inform 2006; 124: 977-982.
- 29 Insight Segmentation and Registration Toolkit (ITK).. http://www.itk.org.
- 30 Säring D, Ehrhardt J, Stork A, Bansmann MP, Lund GK, Handels H. Computer-assisted analysis of 4D cardiac MR image sequences after myocardial infarction. Methods Inf Med 2006; 45 (04) 377-383.
- 31 Säring D, Ehrhardt J, Stork A, Bansmann MP, Lund GK, Handels H. HeATHeart Analysis Tool. In: 50. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 2005. pp 28-30.
- 32 Schroeder W, Lorensen B. The Visualization Tool-kit: An Object-Oriented Approach to 3-D Graphics: An Object-oriented Approach to 3-D Graphics. Prentice Hall PTR; 1996
- 33 Oppelt A, Graumann R, Barfuss A. FISP: a new fast MRI sequence. Electromedica 1986; 54: 15-1852. 14.
- 34 Segars W, Lalush DS, Tsui BMW. A realistic spline-based dynamic heart phantom. Nuclear Science, IEEE Transactions on 1999; 46 (03) 503-506.
- 35 Ashburner J, Friston K. Voxel-based morphometry: the methods 2000
- 36 Matheijssen NA, Baur LH, Reiber JH, van der Velde EA, van Dijkman PR, van der Geest RJ, de Roos A, van der Wall EE. Assessment of left ventricular volume and mass by cine magnetic resonance imaging in patients with anterior myocardial infarction. Intra-observer and inter-observer variability on contour detection. Int J Card Imaging 1996; 12: 11-19.
- 37 Relan J, Säring D, Groth M, Müllerleile K, Handels H. 3D Segmentation of the Left Ventricle combining Long- and Shortaxis Views. In: Tolxdorff T, Braun J, Deserno TM, Handels H, Horsch A, Meinzer H-P. (eds). Bildverarbeitung für die Medizin 2008. Springer Verlag, Berlin: Informatik aktuell; 2008. pp 6-10.
- 38 Ehrhardt J, Werner R, Frenzel T, Säring D, Lu W, Low D, Handels H. Optical Flow based Method for Improved Reconstruction of 4D CT Data Sets Acquired During Free Breathing. Medical Physics, 2007; 34 (02) 711-721.
- 39 Handels H, Horsch A, Meinzer H-P. Advances in Medical Image Computing. Methods Inf Med 2007; 46: 251-253.
- 40 Werner R, Ehrhardt J, Frenzel T, Säring D, Lu W, Low D, Handels H. Motion Artifact Reducing Reconstruction of 4D CT Image Data for the Analysis of Respiratory Dynamics. Methods Inf Med 2007; 46: 254-260.