Methods Inf Med 2016; 55(04): 305-311
DOI: 10.3414/ME15-05-0009
Original Articles
Schattauer GmbH

Computational Electrocardiography: Revisiting Holter ECG Monitoring

Thomas M. Deserno
1   Aachen University of Technology (RWTH), Department of Medical Informatics, Aachen, Germany
,
Nikolaus Marx
2   Department of Cardiology – Uniklinik RWTH Aachen, Aachen, Germany
› Author Affiliations
Fundings This work has been partially funded by the European Foundation for the Study of Diabetes (EFSD), grant number 74550-94555 and by the Excellence Initiative of the German federal and state governments, grant number OPBF074.
Further Information

Publication History

received: 22 July 2015

accepted: 07 July 2015

Publication Date:
08 January 2018 (online)

Summary

Background: Since 1942, when Goldberger introduced the 12-lead electrocardiography (ECG), this diagnostic method has not been changed.

Objectives: After 70 years of technologic developments, we revisit Holter ECG from recording to understanding.

Methods: A fundamental change is foreseen towards “computational ECG” (CECG), where continuous monitoring is producing big data volumes that are impossible to be inspected conventionally but require efficient computational methods. We draw parallels between CECG and computational biology, in particular with respect to computed tomography, computed radiology, and computed photography. From that, we identify technology and methodology needed for CECG.

Results: Real-time transfer of raw data into meaningful parameters that are tracked over time will allow prediction of serious events, such as sudden cardiac death. Evolved from Holter’s technology, portable smartphones with Bluetooth-connected textile-embedded sensors will capture noisy raw data (recording), process meaningful parameters over time (analysis), and transfer them to cloud services for sharing (handling), predicting serious events, and alarming (understanding). To make this happen, the following fields need more research: i) signal processing, ii) cycle decomposition; iii) cycle normalization, iv) cycle modeling, v) clinical param -eter computation, vi) physiological modeling, and vii) event prediction.

Conclusions: We shall start immediately developing methodology for CECG analysis and understanding.

 
  • References

  • 1 Einthoven W. Über die Form des menschlichen Elektrokardiogramms. Arch Ges Physiol 1895; 60: 101-123.
  • 2 Wilson NF, Johnston FE, Macleod AG, Barker PS. Electrocardiograms that represent the potential variations of a single electrode. Am Heart J 1934; 9: 447-458.
  • 3 Barnes AR, Pardee HEB, White PD. et al. Standardization of precordial leads. Am Heart J 1938; 15: 235-239.
  • 4 Goldberger E. The aVL, aVR, and aVF leads: a simplification of standard lead electrocardiography. Am Heart J 1942; 24: 378-396.
  • 5 Goldberger E. A simple indifferent electrocardiographic electrode of zero potential and a technique of obtaining augmented, unipolar extremity leads. Am Heart J 1942; 23: 483-492.
  • 6 Holter NJ, Generelli JA. Remote recording of physiologic data by radio. Rocky Mountain Med J 1949; 747-751.
  • 7 Ambrose J, Hounsfield G. Computerized trans-verse axial tomography. Br J Radiol 1973; 46 (Suppl. 542) 148-149.
  • 8 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973; 46 (Suppl. 552) 1016-1022.
  • 9 Mattoon JS, Smith C. Breakthroughs in radiography: computed radiography. Comp Cont Educ Pract 2004; 26 (Suppl. 01) 4.
  • 10 Mann S, Picard RW. Virtual bellows: constructing high-quality images from video. Proc IEEE ICIP 1994
  • 11 Szeliski R. Image mosaicing for tele-reality applications. Technical Report. Cambridge Research Laboratory. Cambridge, MA, USA: 1994 CRL 94/2.
  • 12 Mann S. Compositing multiple pictures of the same scene. Proc IS&T 1993; 46: 50-52.
  • 13 Mann S, Picard RW. On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. Proc IS&T 1995; 48: 422-428.
  • 14 Levoy M, Hanrahan P. Light field rendering. Proc SIGGRAPH 1996
  • 15 Hylen SHL, Ruda M. Selective focus system for use in photography. International Patent Application PCT/US2002/039367, 2003
  • 16 Davis A, Rubinstein M, Wadhwa N, Mysore GJ, Durand F, Freeman WT. The visual microphone: passive recovery of sound from video. Proc SIGGRAPH 2014
  • 17 Huerta M, Haseltine F, Liu Y, Downing G, Seto B. NIH working definition of bioinformatics and computational biology. Technical Report. National Institutes of Health Bethesda, MD: 2000
  • 18 Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ. et al. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology. J Am Coll Cardiol 2007; 49 (Suppl. 10) 1109-1127.
  • 19 Mason JW, Hancock EW, Gettes LS, Bailey JJ, Childers R. et al. Recommendations for the standardization and interpretation of the electrocardiogram: part II: electrocardiography diagnostic. J Am Coll Cardiol 2007; 49 (Suppl. 10) 1128-1135.
  • 20 Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances. J Am Coll Cardiol 2009; 53 (Suppl. 11) 976-981.
  • 21 Rautaharju PM, Surawicz B, Gettes LS, Bailey JJ, Childers R. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval. J Am Coll Cardiol 2009; 53 (Suppl. 11) 982-991.
  • 22 Hancock EW, Deal BJ, Mirvis DM, Okin P, Klig-field P, Gettes LS. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy. J Am Coll Cardiol 2009; 53 (Suppl. 11) 992-1002.
  • 23 Wagner GS, Macfarlane P, Wellens H, Josephson M, Gorgels A. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI: acute ischemia/ infarction. J Am Coll Cardiol 2009; 53 (Suppl. 11) 1003-1011.
  • 24 Maestri R, Pinna GD, Porta A, Balocchi R, Sassi R, Signorini MG, Dudziak M, Raczak G. Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable?. Physiol Meas 2007; 28 (Suppl. 09) 1067-1077.
  • 25 Barrett PM, Komatireddy R, Haaser S, Topol S, Sheard J, Encinas J, Fought AJ, Topol EJ. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med 2014; 127 (Suppl. 01) 95.e11-95.e17.
  • 26 Turakhia MP, Hoang DD, Zimetbaum P, Miller JD, Froelicher VF, Kumar UN, Xiangyan Xu, Yang F, Heidenreich PA. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J Cardiol 2013; 112 (Suppl. 04) 520-524.
  • 27 Maier C, Wenz H, Dickhaus H. Robust detection of sleep apnea from Holter ECGs. Joint assessment of modulations in QRS amplitude and respiratory myogram interference. Methods Inf Med 2014; 53 (Suppl. 04) 303-307.
  • 28 McCray AT, Gefeller O, Aronsky D, Leong TY, Sarkar IN, Bergemann D, Lindberg DA, van Bemmel JH, Haux R. The birth and evolution of a discipline devoted to information in biomedicine and health care. As reflected in its longest running journal. Methods Inf Med 2011; 50 (Suppl. 06) 491-507.
  • 29 Lazzari JO, Fachinat A, Tambussi A. Clinical assessment of the right ventricle anterior papillary muscle extrasystoles with Holter recordings. Pacing Clin Electrophysiol 1990; 13 (Suppl. 03) 275-284.
  • 30 Bianchi AM, Mendez MO, Ferrario M, FeriniStrambi L, Cerutti S. Long-term correlations and complexity analysis of the heart rate variability signal during sleep: comparing normal and pathologic subjects. Methods Inf Med 2010; 49 (Suppl. 05) 479-483.
  • 31 Corino VD, Matteucci M, Mainardi LT. Analysis of heart rate variability to predict patient age in a healthy population. Methods Inf Med 2007; 46 (Suppl. 02) 191-195.
  • 32 Smith AL, Owen H, Reynolds KJ. Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J Clin Monit Comput 2013; 27 (Suppl. 05) 569-576.
  • 33 Smith AL, Owen H, Reynolds KJ. Heart rate variability indices for very short-term (30 beat) analysis. Part 2: survey and toolbox. J Clin Monit Comput 2013; 27 (Suppl. 05) 577-585.
  • 34 Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y, Document Reviewers:. Gorenek B, Lip GY, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M, Macfadyen R. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015 (epub ahead of print).
  • 35 Lederman YS, Balucani C, Lazar J, Steinberg L, Gugger J, Levine SR. Relationship between QT interval dispersion in acute stroke and stroke prognosis: a systematic review. J Stroke Cerebrovasc Dis 2014; 23 (Suppl. 10) 2467-2478.
  • 36 Israel CW. Mechanisms of sudden cardiac death. Indian Heart J 2014; 66 (Suppl. 01) S10-17.
  • 37 Mitrani RD, Myerburg RJ. Ten advances defining sudden cardiac death. Trends Cardiovasc Med. 2015 (epub ahead of print).
  • 38 Podrid PJ, Myerburg RJ. Epidemiology and stratification of risk for sudden cardiac death. Clin Cardiol 2005; 28 (11 Suppl 1) I3-11.
  • 39 Wong MC, Kalman JM, Pedagogos E, Toussaint N, Vohra JK, Sparks PB, Sanders P, Kistler PM, Halloran K, Lee G, Joseph SA, Morton JB. Bradycardia and asystole is the predominant mechanism of sudden cardiac death in patients with chronic kidney disease. J Am Coll Cardiol 2015; 65 (Suppl. 12) 1263-1265.
  • 40 Voigt L, Haq SA, Mitre CA, Lombardo G, Kassotis J. Effect of obstructive sleep apnea on QT dispersion: a potential mechanism of sudden cardiac death. Cardiology 2011; 118 (Suppl. 01) 68-73.
  • 41 Shamsuzzaman AS, Somers VK, Knilans TK, Ackerman MJ, Wang Y, Amin RS. Obstructive sleep apnea in patients with congenital long QT syndrome: implications for increased risk of sudden cardiac death. Sleep 2015; 38 (Suppl. 07) 1113-1119.
  • 42 Roberts WO, Stovitz SD. Incidence of sudden cardiac death in Minnesota high school athletes 1993–2012 screened with a standardized pre- participation evaluation. J Am Coll Cardiol 2013; 62 (Suppl. 14) 1298-1301.
  • 43 Keselbrener L, Keselbrener M, Akselrod S. Nonlinear high pass filter for R-wave detection in ECG signal. Med Eng Phys 1997; 19 (Suppl. 05) 481-484.
  • 44 Suhas S, Vijendra S, Burk J, Lucas E, Behbehani K. Spectral analysis of R wave attenuation and heart rate variability for detection of Cheyne stokes breathing. Proc IEEE Eng Med Biol Soc Conf 2005; 2: 1216-1219.
  • 45 Hasegawa H, Watanabe T, Uozumi T. Real-time P and R wave detection in exercise electrocardiogram. Adv Soft Comput 2005; 29: 591-603.
  • 46 Charef A, Abdelliche F. Fractional wavelet for R-Wave detection in ECG signal. Crit Rev Biomed Eng 2008; 36 (2–3) 79-91.
  • 47 Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42 (Suppl. 02) 361-370.
  • 48 Kharabian S, Shamsollahi MB, Sameni R. Fetal R-wave detection from multichannel abdominal ECG recordings in low SNR. Proc IEEE Eng Med Biol Soc Conf 2009; pp 344-347.
  • 49 Liu NT, Batchinsky AI, Cancio LC, Baker Jr WL, Salinas J. Development and validation of a novel fusion algorithm for continuous, accurate, and automated R-wave detection and calculation of signal-derived metrics. J Crit Care 2013; 28 (Suppl. 05) 885.
  • 50 Reed MJ, Robertson CE, Addison PS. Heart rate variability measurements and the prediction of ventricular arrhythmias. Q J Med 2005; 98 (Suppl. 02) 87-95.
  • 51 Xia L, Huo M, Wei Q, Liu F, Crozier S. Electrodynamic heart model construction and ECG simulation. Methods Inf Med 2006; 45 (Suppl. 05) 564-573.
  • 52 Suppappola S, Sun Y, Chiaramida SA. Gaussian pulse decomposition: an intuitive model of electrocardiogram waveforms. Ann Biomed Eng 1997; 25 (Suppl. 02) 252-260.
  • 53 Awal A, Sheikh Shanawaz M, Mohiuddin A. Simplified mathematical model for generating ECG signal and fitting the model using nonlinear least square technique. Proc Int Conf Mech Eng. 2011; Dhaka 2001; 6: RT-011.
  • 54 Sartor M, Jonas S, Wartzek T, Leonhardt S, Wanner C, Marx N, Deserno TM. Nicht-lineare Zeitnormierung im Langzeit-EKG. Generierung einheitlicher Pseudo-Bilddaten aus MultikanalAbleitungen. In: Deserno TM, Handels H, Meinzer HP, Tolxdorff T. (eds). Bildverarbeitung für die Medizin 2014. Algorithmen Systeme Anwendungen. Berlin: Springer-Verlag; 2014. pp 300-305 [German].
  • 55 Junttila MJ, Castellanos A, Huikuri HV, Myerburg RJ. (2011) Risk markers of sudden cardiac death in standard 12-lead electrocardiograms. Ann Med 2012; 44 (Suppl. 07) 717-732.
  • 56 Chen Z, Barbieri R. Editorial: engineering approaches to study cardiovascular physiology: modeling, estimation, and signal processing. Front Physiol 2012; 3: 425-426.
  • 57 Schoenenberger AW, Schär O, Kobza R, Erne P. Prediction of arrhythmic events by Wedensky modulation in patients with coronary artery disease. Swiss Med Wkly 2014; 144.
  • 58 Myerburg RJ, Ullmann SG. Alternative research funding to improve clinical outcomes: model of prediction and prevention of sudden cardiac death. Circ Arrhythm Electrophysiol 2015; 8 (Suppl. 02) 492-498.
  • 59 Fortrat JO, de Germain V, Custaud MA. Holter heart rate variability: are we measuring physical activity?. Am J Cardiol 2010; 106 (Suppl. 03) 449.
  • 60 Zulfiqar U, Jurivich DA, Gao W, Singer DH. Relation of high heart rate variability to healthy longevity. Am J Cardiol 2010; 105 (Suppl. 08) 1181-1185.
  • 61 Ajijola OA. Sudden cardiac death: we are not there yet. Trends Cardiovasc Med. 2015 (epub ahead of print).
  • 62 Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big data in science and healthcare: a review of recent literature and perspectives. Yearb Med Inform 2014; 9 (Suppl. 01) 21-26.
  • 63 Wang W, Krishnan E. Big data and clinicians: a review on the state of the science. JMIR Med Inform 2014; 2 (Suppl. 01) e1.
  • 64 Schleidgen S, Klingler C, Bertram T, Rogowski WH, Marckmann G. What is personalized medicine: sharpening a vague term based on a systematic literature review. BMC Med Ethics 2013; 14: 55.
  • 65 van Bemmel JH, Willems JL. Standardization and validation of medical decision-support systems: the CSE project. Methods Inf Med 1990; 29 (Suppl. 04) 261-262.
  • 66 Willems JL, Arnaud P, van Bemmel JH, Degani R, Macfarlane PW, Zywietz C. Common standards for quantitative electrocardiography: goals and main results. Methods Inf Med 1990; 29 (Suppl. 04) 263-271.
  • 67 Brohet CR, Derwael C, Robert A, Fesler R. Methodology of ECG interpretation in the Louvain program. Methods Inf Med 1990; 29 (Suppl. 04) 403-409.
  • 68 Rautaharju PM, MacInnis PJ, Warren JW, Wolf HK, Rykers PM, Calhoun HP. Methodology of ECG interpretation in the Dalhousie program; NOVACODE ECG classification procedures for clinical trials and population health surveys. Methods Inf Med 1990; 29 (Suppl. 04) 362-374.
  • 69 Arnaud P, Rubel P, Morlet D, Fayn J, Forlini MC. Methodology of ECG interpretation in the Lyon program. Methods Inf Med 1990; 29 (Suppl. 04) 393-402.
  • 70 Zywietz C, Borovsky D, Götsch G, Joseph G. Methodology of ECG interpretation in the Hannover program. Methods Inf Med 1990; 29 (Suppl. 04) 375-385.
  • 71 Degani R, Bortolan G. Methodology of ECG interpretation in the Padova program. Methods Inf Med 1990; 29 (Suppl. 04) 386-392.
  • 72 Okajima M, Okamoto N, Yokoi M, Iwatsuka T, Ohsawa N. Methodology of ECG interpretation in the Nagoya program. Methods Inf Med 1990; 29 (Suppl. 04) 341-345.
  • 73 van Bemmel JH, Kors JA, van Herpen G. Methodology of the modular ECG analysis system MEANS. Methods Inf Med 1990; 29 (Suppl. 04) 346-353.
  • 74 Abreu-Lima C, Marques de Sa JP. Interpretation of short ECGs with a personal computer: the Porto program. Methods Inf Med 1990; 29: 410-412.
  • 75 Macfarlane PW, Devine B, Latif S, McLaughlin S, Shoat DB, Watts MP. Methodology of ECG interpretation in the Glasgow program. Methods Inf Med 1990; 29 (Suppl. 04) 354-361.
  • 76 Pipberger HV, McManus CD, Pipberger HA. Methodology of ECG interpretation in the AVA program. Methods Inf Med 1990; 29 (Suppl. 04) 337-340.
  • 77 Willems JL, Abreu-Lima C, Arnaud P, Brohet CR, Denis B, Gehring J, Graham I, van Herpen G, Machado H, Michaelis J, Moulopoulos SD. Evaluation of ECG interpretation results obtained by computer and cardiologists. Methods Inf Med 1990; 29: 308-316.
  • 78 Morlet D, Rubel P, Willems LJ. Value of scatter-graphs for the assessment of ECG computer measurement results. Methods Inf Med 1990; 29: 413-423.
  • 79 Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ Res 2013; 112 (Suppl. 05) 863-874.
  • 80 Rudy Y, Lindsay BD. Electrocardiographic imaging of heart rhythm disorders: from bench to bedside. Card Electrophysiol Clin 2015; 7 (Suppl. 01) 17-35.
  • 81 Márquez MF. Sudden cardiac death syndromes: Changing the paradigm of diagnosis from ECG to molecular genetics. Trends Cardiovasc Med. 2015 (epub ahead of print).
  • 82 Michaelis J, Wellek S, Willems JL. Reference standards for software evaluation. Methods Inf Med 1990; 29: 289-297.