Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH
Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities
Roberto J. C. Fonseca
1
Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Stephan-Nicollas M. C. G. Oliveira
1
Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Fábio R. Melo
1
Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Maria G. Pereira
2
Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Norma M. B. Benevides
2
Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Paulo A. S. Mourão
1
Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
› Author AffiliationsFinancial support: This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Programa Rede Nordeste de Biotecnologia (RENORBIO).
We compared sulfated galactans (SGs) from two species of red algae using specific coagulation assays and experimental models of thrombosis.These polysaccharides have an identical saccharide structure and the same size chain, but with slight differences in their sulfation patterns.As a consequence of these differences, the two SGs differ in their anticoagulant and venous antithrombotic activities.SG from G.crinale exhibits procoagulant and prothrombotic effects in low doses (up to 1.0 mg/kg body weight), but in high doses (>1.0 mg/kg) this polysaccharide inhibits both venous and arterial thrombosis in rats and prolongs ex-vivo recalcification time. In contrast, SG from B. occidentalis is a very potent anticoagulant and antithrombotic compound in low doses (up to 0.5 mg/kg body weight), inhibiting venous experimental thrombosis and prolonging ex-vivo recalcification time, but these effects are reverted in high doses. Only at high doses (>1.0 mg/kg) the SG from B. occidentalis inhibits arterial thrombosis. As with heparin, SG from G. crinale does not activate factor XII, while the polysaccharide from B. occidentalis activates factor XII in high concentrations, which could account for its procoagulant effect at high doses on rats. Both SGs do not modify bleeding time in rats.These results indicate that slight differences in the proportions and/or distribution of sulfated residues along the galactan chain may be critical for the interaction between proteases, inhibitors and activators of the coagulation system, resulting in a distinct pattern in anti- and procoagulant activities and in the antithrombotic action.
2
White RH,
Zhou H,
Romano P.
et al. Changes in plasma warfarin levels and variations in steady-state prothrombin times. Clin Pharmcol Ther 1995; 58: 588-593.
5
Pereira MS,
Melo FR,
Mourão PAS.
Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans?. Glycobiology 2002; 12: 573-580.
6
Farias WRL,
Valente AP,
Pereira MS.
et al. Structure and anticoagulant activity of sulfated galactans – Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J Biol Chem 2000; 275: 29299-29307.
8
Pereira MP,
Benevides NMB,
Melo MRS.
et al. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res 2005; 340: 2015-2023.
9
Farndale RW,
Buttle DJ,
Barret AJ.
Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochem Biophys Acta 1986; 883: 173-177
13
Zhuo R,
Miller R,
Bussard KM.
et al. Procoagulant stimulus processing by the intrinsic pathway of blood plasma coagulation. Biomaterials 2005; 26: 2965-2973.
15
Friedman RJ.
Optimal duration of prophylaxis for venous thromboembolism following total hip arthroplasty and total knee arthroplasty. J Am Acad Orthop Surg 2007; 15: 148-155.
24
Kurabayashi H,
Tamura J,
Naruse T.
et al. Possible existence of platelet activation before the onset of cerebral infarction. Atherosclerosis 2000; 153: 203-207.
25
Nylander S,
Mattsson C.
Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 2003; 14: 159-167.