Thromb Haemost 2008; 99(03): 539-545
DOI: 10.1160/TH07-10-0603
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities

Roberto J. C. Fonseca
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Stephan-Nicollas M. C. G. Oliveira
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Fábio R. Melo
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Maria G. Pereira
2   Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Norma M. B. Benevides
2   Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Paulo A. S. Mourão
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
› Author Affiliations
Financial support: This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Programa Rede Nordeste de Biotecnologia (RENORBIO).
Further Information

Publication History

Received: 10 October 2007

Accepted after major revision: 31 January 2008

Publication Date:
07 December 2017 (online)

Summary

We compared sulfated galactans (SGs) from two species of red algae using specific coagulation assays and experimental models of thrombosis.These polysaccharides have an identical saccharide structure and the same size chain, but with slight differences in their sulfation patterns.As a consequence of these differences, the two SGs differ in their anticoagulant and venous antithrombotic activities.SG from G.crinale exhibits procoagulant and prothrombotic effects in low doses (up to 1.0 mg/kg body weight), but in high doses (>1.0 mg/kg) this polysaccharide inhibits both venous and arterial thrombosis in rats and prolongs ex-vivo recalcification time. In contrast, SG from B. occidentalis is a very potent anticoagulant and antithrombotic compound in low doses (up to 0.5 mg/kg body weight), inhibiting venous experimental thrombosis and prolonging ex-vivo recalcification time, but these effects are reverted in high doses. Only at high doses (>1.0 mg/kg) the SG from B. occidentalis inhibits arterial thrombosis. As with heparin, SG from G. crinale does not activate factor XII, while the polysaccharide from B. occidentalis activates factor XII in high concentrations, which could account for its procoagulant effect at high doses on rats. Both SGs do not modify bleeding time in rats.These results indicate that slight differences in the proportions and/or distribution of sulfated residues along the galactan chain may be critical for the interaction between proteases, inhibitors and activators of the coagulation system, resulting in a distinct pattern in anti- and procoagulant activities and in the antithrombotic action.

 
  • References

  • 1 White RH. The epidemiology of venous thromboembolism. Circulation 2003; 107: 14-18.
  • 2 White RH, Zhou H, Romano P. et al. Changes in plasma warfarin levels and variations in steady-state prothrombin times. Clin Pharmcol Ther 1995; 58: 588-593.
  • 3 Merlini PA, Ardissino D, Bauer KA. et al. Persistant thrombin generation during heparin therapy in patients with acute coronary syndromes. Aterioscler Thromb Vasc Biol 1997; 17: 1325-1330.
  • 4 Fonseca RJC, Mourão PAS. Fucosylated chondroitin sulfate as a new antithrombotic agent. Thromb Haemost 2006; 96: 822-829.
  • 5 Pereira MS, Melo FR, Mourão PAS. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans?. Glycobiology 2002; 12: 573-580.
  • 6 Farias WRL, Valente AP, Pereira MS. et al. Structure and anticoagulant activity of sulfated galactans – Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J Biol Chem 2000; 275: 29299-29307.
  • 7 Mourão PA. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des 2004; 10: 967-981.
  • 8 Pereira MP, Benevides NMB, Melo MRS. et al. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr Res 2005; 340: 2015-2023.
  • 9 Farndale RW, Buttle DJ, Barret AJ. Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochem Biophys Acta 1986; 883: 173-177
  • 10 Wessler S, Reimer SM, Sheps MC. Biological assay of a thrombosis inducing activity in human serum. J Appl Physiol 1959; 14: 943-946.
  • 11 Eitzman DT, Westrick RJ, Nabel EG. et al. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood 2000; 95: 577-580.
  • 12 Herbert JM, Bernat A, Maffrand JP. Importance of platelets in experimental venous thrombosis in rats. Blood 1992; 80: 2281-2286.
  • 13 Zhuo R, Miller R, Bussard KM. et al. Procoagulant stimulus processing by the intrinsic pathway of blood plasma coagulation. Biomaterials 2005; 26: 2965-2973.
  • 14 American Heart Association 2002. Heart and Stroke. Statistical update.
  • 15 Friedman RJ. Optimal duration of prophylaxis for venous thromboembolism following total hip arthroplasty and total knee arthroplasty. J Am Acad Orthop Surg 2007; 15: 148-155.
  • 16 Mourão PAS, Pereira MS. Searching for alternatives to heparin. Trends Cardiovasc Med 1999; 9: 225-232.
  • 17 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 30: 10363-10370.
  • 18 Dahlback B. Blood coagulation. Lancet 2000; 355: 1627-1632
  • 19 Renné T, Pozgajová M, Grüner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 18: 271-281.
  • 20 Yarovaya GA, Blokhina TB, Neshkova EA. Contact system. New concepts on activation mechanisms and bioregulatory functions. Biochemistry 2002; 67: 16-29.
  • 21 Blezer R, Fouache B, Willems GM. et al. Activation of blood coagulation at heparin-coated surfaces. J Biomed Mater Res 1997; 37: 108-113.
  • 22 et al. Improved coagulation in bleeding disorders by non-anticoagulant sulfated polysaccharides (NASP). Thromb Haemost 2006; 95: 68-76.
  • 23 Heit JA. Risk factors for venous thromboembolism. Clin Chest Med 2003; 24: 1-12.
  • 24 Kurabayashi H, Tamura J, Naruse T. et al. Possible existence of platelet activation before the onset of cerebral infarction. Atherosclerosis 2000; 153: 203-207.
  • 25 Nylander S, Mattsson C. Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 2003; 14: 159-167.