Plant Biol (Stuttg) 2007; 9(5): 672-681
DOI: 10.1055/s-2007-965439
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Evaluation of the Metal Phytoextraction Potential of Crop Legumes. Regulation of the Expression of O-Acetylserine (Thiol)Lyase under Metal Stress

E. Pajuelo1 , 2 , J. A. Carrasco2 , L. C. Romero3 , M. A. Chamber2 , C. Gotor3
  • 1Present address: Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012 Sevilla, Spain
  • 2CIFA Las Torres-Tomejil, IFAPA, Junta de Andalucía, Carretera Sevilla-San José de la Rinconada, km. 12, 41200 Alcalá del Río, Sevilla, Spain
  • 3Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Further Information

Publication History

Received: March 8, 2007

Accepted: May 22, 2007

Publication Date:
13 September 2007 (online)

Abstract

The metal phytoextraction potential of three legumes belonging to different genera has been studied under greenhouse conditions. Legumes accumulate As and metals mainly in roots, although translocation to shoot is observed. Alfalfa did accumulate the highest concentrations of As and metals in shoots and aerial biomass was less affected by the toxic elements, indicating its good behaviour in phytoextraction. Clover accumulated less metal, but showed larger biomass. EDTA addition enhanced Pb phytoextraction up to levels similar to those described for plants proposed in phytoremediation. The regulation of O-acetylserine (thiol)lyase from legumes under metal stress has been analysed to test the possibility of establishing a possible correlation between the expression of OASTL in the presence of the metals and the metal accumulation in legume plant tissues. Cd and Pb(EDTA) produce the strongest increases of OASTL activity, with the higher enhancement seen in roots, in parallel with the higher metal accumulation. Arsenic produced an increase of root enzyme activity, whereas Cu produced a decrease, mainly in shoots. Western blots using antibodies against an A. thaliana cytosolic OAS‐TL recognised up to five protein bands in crude extracts from Lotus and clover. A low molecular weight isoform of 32 kDa was induced in the presence of Cd and Pb. A partial RT‐PCR sequence from clover has been obtained, showing 86 - 97 % identity with other described OASTLs. The PCR fragment has been used to analyse OASTL mRNA levels of legumes under metal stress. OASTL transcripts were increased by As, Cd, and Pb, especially in roots, where metal accumulation was maximal, while Cu produced a decrease in the transcript levels.

References

  • 1 Ager F. J., Ynsa M. D., Domínguez-Solís J. R., Gotor C., Respaldiza M. A., Romero L. C.. Cadmium localization and quantification in the plant Arabidopsis thaliana using Micro-PIXE.  Nuclear Instruments and Methods in Physics Research B. (2002);  189 494-498
  • 2 Baker A. J. M., McGrath S. P., Reeves R. D., Smith J. A. C.. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Terry, N. and Bañuelos, G., eds. Phytoremediation of Contaminated Soil and Water. Boca Raton, FL; Lewis Publishers (2000): 85-107
  • 3 Barroso C., Vega J. M., Gotor C.. A new member of the cytosolic O-acetylserine(thiol)lyase family in Arabidopsis thaliana.  FEBS Letters. (1995);  363 1-5
  • 4 Blaylock M. J., Salt D. E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B. D., Raskin I.. Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents.  Environmental Science and Technology. (1997);  31 860-865
  • 5 Bonner E. R., Cahoon R. E., Knape S. M., Jez J. M.. Molecular basis of cysteine biosynthesis in plants. Structural and functional analysis of O-acetylserine sulfhydrilase from Arabidopsis thaliana.  Journal of Biological Chemistry. (2005);  280 38803-38812
  • 6 Bradford M. M.. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 7 Bricker T. J., Pichtel J., Brown H. G., Simmons M.. Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.  Journal of Environmental Science and Health. (2004);  36 1597-1610
  • 8 Callahan D. L., Baker A. J. M., Kolev S. D., Wedd A. G.. Metal ion ligands in hyperaccumulating plants.  Journal of Biological Inorganic Chemistry. (2006);  11 2-12
  • 9 Carrasco J. A., Armario P., Pajuelo E., Burgos A., Caviedes M. A., López R., Chamber M. A., Palomares A. J.. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine.  Soil Biology and Biochemistry. (2005);  37 1131-1140
  • 10 Clemens S.. Evolution and function of phytochelatin synthases.  Journal of Plant Physiology. (2006);  163 319-332
  • 11 Cooper E. M., Sims J. T., Cunningham S. D., Huang J. W., Berti W. R.. Chelate-assisted phytoextraction of lead from contaminated soils.  Journal of Environmental Quality. (1999);  28 1709-1719
  • 12 Del Río M., Font R., De Haro A.. Phytoremediation: use of wild and cultivated plants to clean up the soils polluted by the toxic spill of the Aznalcollar mine (Seville, Southern Spain). A review. Pandalai, S. G., ed. Recent Research Developments in Genetics and Breeding, Vol. 1. Kerala, India; Research Signpost (2004): 67-82
  • 13 Domínguez-Solís J. R., Gutiérrez-Alcalá G., Vega J. M., Romero L. C., Gotor C.. The cytosolic O-acetylsetine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.  Journal of Biological Chemistry. (2001);  276 9297-9302
  • 14 Domínguez-Solís J. R., López-Martín M. C., Ager F. J., Ynsa M. D., Romero L. C., Gotor C.. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana.  Plant Biotechnology Journal. (2004);  2 469-476
  • 15 Evans K. M., Gatehouse J. A., Linsay W. P., Shi J., Tommey A. M., Robinson N. J.. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function.  Plant Molecular Biology. (1992);  20 1019-1028
  • 16 García-Hernández M., Murphy A., Taiz L.. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis.  Plant Physiology. (1998);  118 387-397
  • 17 Gisbert C., Ros R., De Haro A., Walter D. J., Bernal M. P., Serrano R., Navarro-Aviñó J.. A plant genetically modified that accumulates Pb is especially promising for phytoremediation.  Biochemical and Biophysical Research Communications. (2003);  303 440-445
  • 18 Gotor C., Cejudo F. J., Barroso C., Vega J. M.. Tissue-specific expression of ATCYS3A, a gene encoding the cytosolic isoform of O-acetylserine(thiol)lyase in Arabidopsis.  The Plant Journal. (1997);  11 347-352
  • 19 Graham P. H., Vance C. P.. Legumes: importance and constraints to greater use.  Plant Physiology. (2003);  131 872-877
  • 20 Grimalt J. O., Ferrer M., Macpherson E.. The mine tailing accident in Aznalcóllar.  The Science of the Total Environment. (1999);  242 3-11
  • 21 Gutiérrez-Alcalá G., Gotor C., Meyer A. J., Fricker M., Vega J. M., Romero L. C.. Glutathione biosynthesis in Arabidopsis trichome cells.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 11108-11113
  • 22 Hawkesford M. J., De Kok L. J.. Managing sulphur metabolism in plants.  Plant, Cell and Environment. (2006);  29 382-395
  • 23 Lasat M. M.. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.  Journal of Hazardous Substances Research. (2000);  2 1-25
  • 24 Lee S., Moon J. S., Ko T. S., Petros D., Goldsbrough P. B., Korban S. S.. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.  Plant Physiology. (2003);  131 656-663
  • 25 Lombi E., Zhao F. J., Dunham S. J., McGrath S. P.. Natural hyperaccumulation versus chemically enhanced phytoextraction.  Journal of Environmental Quality. (2001);  30 1919-1926
  • 26 Ma L. Q., Komar K. M., Tu C., Zhang W., Cai Y., Kennelly E. D.. A fern that hyperaccumulates arsenic.  Nature. (2001);  409 579-581
  • 27 McIntyre T.. Phytoremediation of heavy metals from soils.  Advances in Biochemical Engineering/Biotechnology. (2003);  78 98-123
  • 28 Murillo J. M., Marañón T., Cabrera F., López R.. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.  The Science of the Total Environment. (1999);  242 281-292
  • 29 Pajuelo E., Stougaard J.. Lotus japonicus as model system. Márquez, A. J., ed. The Lotus japonicus Handbook. Dordrecht, The Netherlands; Springer-Verlag (2005): 3-24
  • 30 Pastor J., Hernández A. J., Prieto N., Fernández-Pascual M.. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.  Journal of Plant Physiology. (2003);  160 1457-1465
  • 31 Pence N. S., Larsen P. B., Ebbs S. D., Letham D. L. D., Lasat M. M., Garvin D. F., Eide D. E., Kochian L.V.. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 4956-4960
  • 32 Persans M. W., Yan X., Patnone J. M. L., Krämer U., Salt D. E.. Molecular dissection of the role of histidine in nickel hyperaccumulator in Thlaspi goesingense (Hálácsy).  Plant Physiology. (1999);  121 1117-1126
  • 33 Pilon-Smits E. A. H.. Phytoremediation.  Annual Review of Plant Biolology. (2005);  56 15-39
  • 34 Prasad M. N. V., Freitas H. M. O.. Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology.  Electronic Journal of Biotechnology. (2003);  6 285-321
  • 35 Schäfer H. J., Haag-Kerwer A., Rausch T.. cDNA cloning and expression analysis of genes encoding GSH biosynthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd induction of a putative mitochondrial γ-glutamyl cysteine synthetase isoform.  Plant Molecular Biology. (1998);  37 87-97
  • 36 Serrano A., Chamber M.. Nitrate reduction in Bradyrhizobium sp. (Lupinus) strains and its effects on their symbiosis with Lupinus luteus.  Journal of Plant Physiology. (1990);  136 240-246
  • 37 Sirko A., Blaszczyk A., Liszewska F.. Overproduction of SAT and/or OASTL in transgenic plants. A survey of effects.  Journal of Experimental Botany. (2004);  55 1881-1888
  • 38 Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y., Jasinski M., Forestier C., Hwang I., Lee Y.. Engineering tolerance and accumulation of lead and cadmium in transgenic plants.  Nature Biotechnology. (2003);  21 914-919
  • 39 Sriprang R., Hayashi M., Yamashita M., Ono H., Saeki K., Murooka Y.. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia.  Journal of Biotechnology. (2002);  99 279-293
  • 40 Wang J., Zhao F. J., Meharg A. A., Raab A., Feldman J., McGrath S. P.. Mechanism of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation.  Plant Physiology. (2002);  130 1552-1561
  • 41 Wawrzynski A., Kopera E., Wawrzynska A., Kaminska J., Bal W., Sirko A.. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiols content and cadmium accumulation in tobacco plants.  Journal of Experimental Botany. (2006);  57 2173-2182
  • 42 Wirtz M., Hell R.. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties.  Journal of Plant Physiology. (2006);  163 273-286
  • 43 Xiang C., Oliver D. J.. Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis.  Plant Cell. (1998);  10 1539-1550
  • 44 Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., Terry N.. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance.  Plant Physiology. (1999 a);  119 73-79
  • 45 Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N.. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase.  Plant Physiology. (1999 b);  121 1169-1177

C. Gotor

Instituto de Bioquímica Vegetal y Fotosíntesis
Centro de Investigaciones Científicas Isla de la Cartuja
CSIC and Universidad de Sevilla

Avda. Américo Vespucio, 49

41092 Sevilla

Spain

Email: gotor@ibvf.csic.es

Guest Editor: T. Rausch