Subscribe to RSS
DOI: 10.1055/s-2007-965430
Georg Thieme Verlag Stuttgart KG · New York
Sulfate Assimilation in Basal Land Plants - What Does Genomic Sequencing Tell Us?
Publication History
Received: February 13, 2007
Accepted: April 24, 2007
Publication Date:
13 September 2007 (online)
Abstract
Sulfate assimilation is a pathway providing reduced sulfur for the synthesis of cysteine, methionine, co-enzymes such as iron-sulfur centres, thiamine, lipoic acid, or Coenzyme A, and many secondary metabolites, e.g., glucosinolates or alliins. The pathway is relatively well understood in flowering plants, but very little information exists on sulfate assimilation in basal land plants. Since the finding of a putative 3′-phosphoadenosine 5′-phosphosulfate reductase in Physcomitrella patens, an enigmatic enzyme thought to exist in fungi and some bacteria only, it has been evident that sulfur metabolism in lower plants may substantially differ from seed plant models. The genomic sequencing of two basal plant species, the Bryophyte Physcomitrella patens, and the Lycophyte Selaginella moellendorffii, opens up the possibility to search for differences between lower and higher plants at the genomic level. Here we describe the similarities and differences in the organisation of the sulfate assimilation pathway between basal and advanced land plants derived from genome comparisons of these two species with Arabidopsis thaliana and Oryza sativa, two seed plants with sequenced genomes. We found differences in the number of genes encoding sulfate transporters, adenosine 5′-phosphosulfate reductase, and sulfite reductase between the lower and higher plants. The consequences for regulation of the pathway and evolution of sulfate assimilation in plants are discussed.
Key words
Sulfate assimilation - cysteine synthesis - Physcomitrella patens - Selaginella moellendorffi - genomics
References
- 1 Abola A. P., Willits M. G., Wang R. C., Long S. R.. Reduction of adenosine-5′-phosphosulfate instead of 3′-phosphoadenosine-5′-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. Journal of Bacteriology. (1999); 181 5280-5287
- 2 Armbrust E. V.. et al. . The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. (2004); 306 79-86
- 3 Ball L., Accotto G. P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineaux P. M.. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell. (2004); 16 2448-2462
- 4 Bick J. A., Dennis J. J., Zylstra G. J., Nowack J., Leustek T.. Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. Journal of Bacteriology. (2000); 182 135-142
-
5 Brunold C..
Reduction of sulfate to sulfide. Rennenberg, H., Brunold, C., De Kok, L. J., and Stulen, I., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1990): 13-31 - 6 Bruns I., Sutter K., Menge S., Neumann D., Krauss G. J.. Cadmium lets increase the glutathione pool in bryophytes. Journal of Plant Physiology. (2001); 158 79-89
- 7 Buchner P., Takahashi H., Hawkesford M. J.. Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. Journal of Experimental Botany. (2004); 55 1765-1773
- 8 Chen H. C., Yokthongwattana K., Newton A. J., Melis A.. SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta. (2003); 218 98-106
- 9 Coughtrie M. W., Sharp S., Maxwell K., Innes N. P.. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chemico-Biological Interactions. (1998); 109 3-27
- 10 Cove D., Bezanilla M., Harries P., Quatrano R.. Mosses as model systems for the study of metabolism and development. Annual Review of Plant Biology. (2006); 57 497-520
- 11 Decker E. L., Frank W., Sarnighausen E., Reski R.. Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biology. (2006); 8 397-406
- 12 Edwards R., Dixon D. P., Walbot V.. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science. (2000); 5 193-198
- 13 Fattash I., Voss B., Reski R., Hess W. R., Frank W.. Evidence for the rapid expansion of microRNA-mediated regulation during early plant evolution. BMC Plant Biology. (2007); 7 13
- 14 Frank W., Ratnadewi D., Reski R.. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta. (2005); 220 384-394
- 15 Grill E., Löffler S., Winnacker E.-L., Zenk M. H.. Phytochelatins, the heavy-metal binding peptides of plants, are synthesised from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatine synthase). Proceedings of the National Academy of Sciences of the USA. (1989); 86 6838-6842
- 16 Grossman A. R.. Paths toward algal genomics. Plant Physiology. (2005); 137 410-427
- 17 Halkier B. A., Gershenzon J.. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology. (2006); 57 303-333
- 18 Hell R., Bergmann L.. γ-glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localisation. Planta. (1990); 180 603-312
- 19 Hohe A., Reski R.. A tool for understanding homologous recombination in plants. Plant Cell Reports. (2003); 21 1135-1142
- 20 Jost R., Berkowitz O., Wirtz M., Hopkins L., Hawkesford M. J., Hell R.. Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene. (2000); 253 237-247
- 21 Kamisugi Y., Schlink K., Rensing S. A., Schween G., v. Stackelberg M., Cuming A. C., Reski R., Cove D. J.. The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Research. (2006); 34 6205-6214
- 22 Kataoka T., Watanabe-Takahashi A., Hayashi N., Ohnishi M., Mimura T., Buchner P., Hawkesford M. J., Yamaya T., Takahashi H.. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell. (2004 a); 16 2693-2704
- 23 Kataoka T., Hayashi N., Yamaya T., Takahashi H.. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology. (2004 b); 136 4198-4204
- 24 Kawashima C. G., Berkowitz O., Hell R., Noji M., Saito K.. Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiology. (2005); 137 220-230
- 25 Klein M., Papenbrock J.. The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. Journal of Experimental Botany. (2004); 55 1809-1820
- 26 Kiessling J., Martin A., Gremillon L., Rensing S. A., Nick P., Sarnighausen E., Decker E. L., Reski R.. Dual targeting of plastid division protein FtsZ to chloroplasts and the cytoplasm. EMBO Reports. (2004); 5 889-894
- 27 Kopriva S.. Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of Botany. (2006); 97 479-495
- 28 Kopriva S., Büchert T., Fritz G., Suter M., Weber M., Benda R., Schaller J., Feller U., Schürmann P., Schünemann V., Trautwein A. X., Kroneck P. M. H., Brunold C.. Plant adenosine 5′-phosphosulfate reductase is a novel iron-sulfur protein. Journal of Biological Chemistry. (2001); 276 42881-42886
- 29 Kopriva S., Büchert T., Fritz G., Suter M., Benda R., Schünemann V., Koprivova A., Schürmann P., Trautwein A. X., Kroneck P. M. H., Brunold C.. The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. Journal of Biological Chemistry. (2002); 277 21786-21791
- 67 Kopriva S., Fritzemeier K., Wiedemann G., Reski R.. The putative moss 3′-phosphoadenosine-5′-phosphosulfate reductase is a novel form of adenosine-5′-phosphosulfate reductase without an iron-sulfur cluster. Journal of Biological Chemistry. (2007); DOI: 10.1074/jbc.M702522200
- 30 Kopriva S., Koprivova A.. Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. Journal of Experimental Botany. (2004); 55 1775-1783
- 31 Koprivova A., Melzer M., von Ballmoos P., Mandel T., Brunold C., Kopriva S.. Assimilatory sulfate reduction in C3, C3-C4, and C4 species of Flaveria. . Plant Physiology. (2001); 127 543-550
- 32 Koprivova A., Meyer A., Schween G., Herschbach C., Reski R., Kopriva S.. Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. Journal of Biological Chemistry. (2002); 277 32195-32201
- 33 Krusell L., Krause K., Ott T., Desbrosses G., Krämer U., Sato S., Nakamura Y., Tabata S., James E. K., Sandal N., Stougaard J., Kawaguchi M., Miyamoto A., Suganuma N., Udvardi M. K.. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell. (2005); 17 1625-1636
- 34 Kumar S., Tamura K., Nei M.. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics. (2004); 5 150-163
- 35 Lang D., Eisinger J., Reski R., Rensing S. A.. Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biology. (2005); 7 238-250
- 36 Leustek T., Martin M. N., Bick J. A., Davies J. P.. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual Review of Plant Physiology and Plant Molecular Biology. (2000); 51 141-165
- 37 May M. J., Vernoux T., Leaver C., van Montagu M., Inzé D.. Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany. (1998); 49 649-667
- 38 Melis A., Chen H. C.. Chloroplast sulfate transport in green algae-genes, proteins and effects. Photosynthesis Research. (2005); 86 299-307
- 39 Menard R., Alban S., de Ruffray P., Jamois F., Franz G., Fritig B., Yvin J. C., Kauffmann S.. Beta-1,3 glucan sulfate, but not beta-1,3 glucan, induces the salicylic acid signalling pathway in tobacco and Arabidopsis. Plant Cell. (2004); 16 3020-3032
- 40 Nishiyama T., Fujita T., Shin-I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carninci P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences of the USA. (2003); 100 8007-8012
- 41 Noctor G., Arisi A.-C. M., Jouanin L., Kunert K. J., Rennenberg H., Foyer C. H.. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany. (1998); 49 623-647
- 42 Noctor G., Foyer C. H.. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology. (1998); 49 249-279
- 43 Rensing S. A., Rombauts S., Van de Peer Y., Reski R.. Moss transcriptome and beyond. Trends in Plant Science. (2002); 7 535-538
- 44 Reski R.. Development, genetics and molecular biology of mosses. Botanica Acta. (1998 a); 111 1-15
- 45 Reski R.. Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends in Plant Science. (1998 b); 3 209-210
- 46 Richardt S., Lang D., Reski R., Frank W., Rensing S. A.. PlanTAPDB: a phylogeny-based resource of plant transcription associated proteins. Plant Physiology. (2007); 143 1452-1466
- 47 Richter U., Kiessling J., Hedtke B., Decker E., Reski R., Börner T., Weihe A.. Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids. Gene. (2002); 290 95-105
- 48 Rother M., Krauss G. J., Grass G., Wesenberg D.. Sulphate assimilation under Cd2+ stress in Physcomitrella patens - combined transcript, enzyme and metabolite profiling. Plant, Cell and Environment. (2006); 29 1801-1811
- 49 Rotte C., Leustek T.. Differential subcellular localization and expression of ATP sulfurylase and 5′-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiology. (2000); 124 715-724
- 50 Sato N., Nakayama M., Hase T.. The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Letters. (2001); 487 347-350
- 51 Schäfer D. G.. A new moss genetics: targeted mutagenesis in Physcomitrella patens. . Annual Reviews of Plant Biology. (2002); 53 477-501
- 52 Schäfer D. G., Zrӱd J.-P.. Efficient gene targeting in the moss Physcomitrella patens. The Plant Journal. (1997); 11 1195-1206
- 53 Shibagaki N., Rose A., McDermott J. P., Fujiwara T., Hayashi H., Yoneyama T., Davies J. P.. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. The Plant Journal. (2002); 29 475-486
- 54 Schmidt A.. On the mechanism of photosynthetic sulfate reduction. An APS-sulfotransferase from Chlorella. . Archives of Microbiology. (1972); 84 77-86
- 55 Schmidt A., Jäger K.. Open questions about sulfur metabolism in plants. Annual Review of Plant Physiology and Plant Molecular Biology. (1992); 43 325-349
- 56 Schwenn J. D.. Sulfate assimilation in higher plants: a thioredoxin-dependent PAPS-reductase from spinach leaves. Zeitschrift für Naturforschung. (1989); 44c 504-508
- 57 Strepp R., Scholz S., Kruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of the National Academy of Sciences of the USA. (1998); 95 4368-4373
- 58 Suter M., von Ballmoos P., Kopriva S., Op den Camp R., Schaller J., Kuhlemeier C., Schürmann P., Brunold C.. Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. Journal of Biological Chemistry. (2000); 275 930-936
- 59 Takahashi H., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J., Saito K.. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant Journal. (2000); 23 171-182
- 60 Truchet G., Roche P., Lerouge P., Vasse J., Camut S., de Billy F., Promé J.-C., Dénarié J.. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature. (1991); 351 670-673
- 61 Tsakraklides G., Martin M., Chalam R., Tarczynski M. C., Schmidt A., Leustek T.. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa. The Plant Journal. (2002); 32 879-889
- 62 Varin L., Marsolais F., Richard M., Rouleau M.. Sulfation and sulfotransferases 6: biochemistry and molecular biology of plant sulfotransferases. FASEB Journal. (1997); 11 517-525
- 63 Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., Op den Camp R., Brunold C.. Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. The Plant Journal. (2002); 31 729-740
- 64 Wachter A., Wolf S., Steininger H., Bogs J., Rausch T.. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant Journal. (2005); 41 15-30
- 65 Weng J. K., Tanurdzic M., Chapple C.. Functional analysis and comparative genomics of expressed sequence tags from the lycophyte Selaginella moellendorffii. BMC Genomics. (2005); 6 85
- 66 Yoshimoto N., Takahashi H., Smith F. W., Yamaya T., Saito K.. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. The Plant Journal. (2002); 29 465-473
S. Kopriva
John Innes Centre
Norwich Research Park
Norwich NR4 7UH
UK
Email: stanislav.kopriva@bbsrc.ac.uk
Guest Editor: T. Rausch