Plant Biol (Stuttg) 2006; 8(5): 673-679
DOI: 10.1055/s-2006-924276
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Construction of a Primary RH Panel of Italian Ryegrass Genome via UV-Induced Protoplast Fusion

A. Cheng[*] 1 , H. Cui[*] 1 , G. Xia1
  • 1School of Life Sciences, Shandong University, Shan Da Nan Lu 27, Jinan 250100, Shandong, China
Further Information

Publication History

Received: February 10, 2006

Accepted: May 4, 2006

Publication Date:
01 August 2006 (online)

Abstract

Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat (Triticum aestivum L.) cv. “Jinan 177” and Italian ryegrass (Lolium multiflorum Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 ∼ 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.

References

  • 1 Bert P. F., Charmet G., Sourdille P., Hayward M. D., Balfourier F.. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers.  Theoretical and Applied Genetics. (1999);  99 445-452
  • 2 Budiman M. A., Mao L., Wood T. C., Wing R. A.. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing.  Genome Research. (2000);  10 129-136
  • 3 Buschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J., Topsch S., Vos P., Salamini F., Schulze-Lefert P.. The barley mlo gene: a novel control element of plant pathogen resistance.  Cell. (1997);  88 695-705
  • 4 Cox D. R., Burmeister M., Price E. R., Kim S. M. R. M.. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes.  Science. (1990);  250 245-250
  • 5 Cheng A. X., Xia G. M.. Somatic hybridization between common wheat and Italian ryegrass.  Plant Science. (2004);  166 1219-1226
  • 6 Dear P. H., Bankier A. T., Piper M. B.. A high-resolution metric HAPPY map of human chromosome 14.  Genomics. (1998);  48 232-241
  • 7 Gao W. X., Chen Z. J., Yu J. Z., Raska D., Kohel R. J., Womack J. E., Stelly D. M.. Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.).  Genetics. (2004);  167 1317-1329
  • 8 Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., Muselet D., Prud'Homme J. F., Dib C., Auffray C., Morissette J., Weissenbach J., Goodfellow P. N.. A radiation hybrid map of the human genome.  Human Molecular Genetics. (1996);  5 339-346
  • 9 Hayward M. D., McAdam N. J., Jones J. G., Evans C., Evans G. M., Forster J. W., Ustin A., Hossain K. G., Quader B., Stammers M., Will J. K.. Genetic markers and the selection of quantitative traits in forage grasses.  Euphytica. (1994);  77 269-275
  • 10 Hossain K. G., Riera-Lizarazu O., Kalavacharla V., Vales M. I., Maan S. S., Kianian S. F.. Radiation hybrid mapping of the species cytoplasm-specific (scsae) gene in wheat.  Genetics. (2004);  168 415-423
  • 11 Jones E. S., Dupal M. P., Kölliker R., Drayton M. C., Forster J. W.. Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.).  Theoretical and Applied Genetics. (2001);  102 405-415
  • 12 Jones E. S., Dupal M. P., Dunmsday J. L., Hughes L. J., Forster J. W.. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.).  Theoretical and Applied Genetics. (2002);  105 577-584
  • 13 Kiguwa S. L., Hextall P., Smith A. L., Critcher R., Swinburne J., Millon L., Binns M. M., Goodfellow P. N., McCarthy L. C., Farr C. J., Oakenfull E. A.. A horse whole-genome-radiation hybrid panel: chromosome 1 and 10 preliminary maps.  Mammalian Genome. (2000);  11 803-805
  • 14 Klein P. E., Klein R. R., Cartinhour S. W., Ulanch P. E., Dong J. M., Morishige D. T., Schlueter S. D., Childs K. L., Ale M., Mullet J. E.. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map.  Genome Research. (2000);  10 789-807
  • 15 Konfortov B. A., Cohen H. M., Bankier A. T., Dear P. H.. A high-resolution HAPPY map of Dictyostelium discoideum chromosome 6.  Genome Research. (2000);  10 1737-1742
  • 16 Künzel G., Korzun L., Meister A.. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints.  Genetics. (2000);  154 397-412
  • 17 Kubik C., Sawkins M., Meyer W. A., Gaut B. S.. Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers.  Crop Science. (2001);  41 1565-1572
  • 18 Mozo T., Dewar K., Dunn P., Ecker J. R., Fischer S., Kloska S., Lehrach H., Marra M., Martienssen R., Meier-Ewert S., Altmann T.. A complete BAC-based physical map of the Arabidopsis thaliana genome.  Nature Genetics. (1999);  22 271-275
  • 19 Sawbridge T., Ong E. K., Binnion C., Emmerling M., McInnes R., Meath K., Nguyen N., Nunan K., O'Neill M., O'Toole F., Simmonds J., Tian P., Wearne K., Webster T., Winkworth A., Spangenberg G.. Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.).  Plant Science. (2003);  165 1089-1100
  • 20 Stewart E. A., Cox D. R.. Radiation hybrid mapping. Dear, P. H., ed. Genome Mapping. New York; Oxford University Press (1997): 72-93
  • 21 Wardrop J., Snape J., Powell W., Machray G. C.. Constructing plant radiation hybrid panels.  The Plant Journal. (2002);  31 223-228
  • 22 Xiang F. N., Xia G. M., Chen H. M.. Effect of UV dosage on somatic hybridization between common wheat (Triticum aestivum L.) and Avena sativa L.  Plant Science. (2003);  164 697-707
  • 23 Xiang F. N., Xia G. M., Zhi D. Y., Wang J., Nie H., Chen H. M.. Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica.  Genome. (2004);  47 680-688
  • 24 Zhdanova N. S.. Genome radiation hybrid mapping: summary and future directions.  Genetica. (2002);  38 581-594
  • 25 Zhou A. F., Xia G. M., Chen H. M., Hu H.. Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestiuvm L. and Haynaldia villosa Schru.  Molecular Genetics and Genomics. (2001);  265 387-393

1 These authors contributed equally to the work

G. Xia

School of Life Sciences
Shandong University

Shan Da Nan Lu 27

Jinan 250100, Shandong

China

Email: xiagm@sdu.edu.cn

Editor: R. Mendel

    >