Plant Biol (Stuttg) 2006; 8(3): 326-333
DOI: 10.1055/s-2006-924075
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Many Roads Lead to “Auxin”: of Nitrilases, Synthases, and Amidases

S. Pollmann1 , A. Müller2 , E. W. Weiler1
  • 1Department of Plant Physiology, Ruhr-University Bochum, Universitätsstraße 150, ND 3/55, 44801 Bochum, Germany
  • 2CarboGen AG, Schachenallee 29, 5001 Aarau, Switzerland
Further Information

Publication History

Received: September 15, 2005

Accepted: February 28, 2006

Publication Date:
15 May 2006 (online)

Abstract

Recent progress in understanding the biosynthesis of the auxin, indole-3-acetic acid (IAA) in Arabidopsis thaliana is reviewed. The current situation is characterized by considerable progress in identifying, at the molecular level and in functional terms, individual reactions of several possible pathways. It is still too early to piece together a complete picture, but it becomes obvious that A. thaliana has multiple pathways of IAA biosynthesis, not all of which may operate at the same time and some only in particular physiological situations. There is growing evidence for the presence of an indoleacetamide pathway to IAA in A. thaliana, hitherto known only from certain plant-associated bacteria, among them the phytopathogen Agrobacterium tumefaciens.

References

  • 1 Akaba S., Seo M., Dohmae N., Takio K., Sekimoto H., Kamiya Y., Furuya N., Komano T., Koshiba T.. Two aldehyde oxidase genes of Arabidopsis thaliana encode peptides for three dimeric isoenzymes.  Journal of Biochemistry. (1999);  126 395-401
  • 2 Bak S., Tax F. E., Feldmann K. A., Galbraith D. W., Feyereisen R.. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.  Plant Cell. (2001);  13 101-111
  • 3 Barlier I., Kowalczyk M., Marchant A., Ljung K., Bhalerao R., Bennett M., Sandberg G., Bellini C.. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 14819-14824
  • 4 Bartel B., Fink G. R.. Differential expression of an auxin producing gene family in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (1994);  91 6649-6653
  • 5 Bartling D., Seedorf M., Mithöfer A., Weiler E. W.. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid.  European Journal of Biochemistry. (1992);  205 417-424
  • 6 Bhalerao R. P., Eklöf J., Ljung K., Marchant A., Bennett M., Sandberg G.. Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings.  The Plant Journal. (2002);  29 325-332
  • 7 Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D.. superroot, a recessive mutation in Arabidopsis, confers auxin overproduction.  Plant Cell. (1995);  7 1405-1419
  • 8 Bower P. J., Brown H. M., Purves W. K.. Cucumber seedling indoleacetaldehyde oxidase.  Plant Physiology. (1978);  61 107-110
  • 9 Celenza J. L., Grisafi P. L., Fink G. R.. A pathway for lateral root formation in Arabidopsis thaliana.  Genes and Development. (1995);  9 2131-2142
  • 10 Chavadej S., Brisson N., McNeil J. N., De Luca V.. Redirection of tryptophan leads to production of low indole glucosinolate canola.  Proceedings of the National Academy of Sciences of the USA. (1994);  91 2166-2170
  • 11 Cooney T. P., Nonhebel H. M.. The measurement and mass spectral identification of indole-3-pyruvate from tomato shoots.  Biochemical and Biophysical Research Communications. (1989);  162 761-766
  • 12 Cooney T. P., Nonhebel H. M.. Biosynthesis of indole-3-acetic acid in tomato shoots: measurement mass-spectral identification and incorporation of 2H from 2H2O into indole-3-acetic acid, D- and L-tryptophan, indole-3-pyruvate and tryptamine.  Planta. (1991);  184 368-376
  • 13 Costacurta A., Keijers V., Vanderleyden J.. Molecular cloning and sequence analysis of an Azospirillium brasilense indole-3-pyruvate decarboxylase gene.  Molecular and General Genetics. (1994);  243 463-472
  • 14 Cutler S. R., Somerville C. R.. Imaging plant cell death: GFP-NitI aggregation marks an early step of wound and herbicide induced cell death.  BMC Plant Biology. (2005);  5 4
  • 15 Czakó M., Wilson J., Yu X., Màrton L.. Sustained root culture for generation and vegetative propagation of transgenic Arabidopsis thaliana.  Plant Cell Reports. (1993);  12 603-606
  • 16 De Luca V., Marineau C., Brisson N.. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases.  Proceedings of the National Academy of Sciences of the USA. (1989);  86 2582-2586
  • 17 Delarue M., Prinsen E., Van Onckelen H., Caboche M., Bellini C.. Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis.  The Plant Journal. (1998);  14 603-611
  • 18 Fahey J. W., Zalcmann A. T., Talalay P.. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.  Phytochemistry. (2001);  56 5-51
  • 19 Friml J.. Auxin transport: shaping the plant.  Current Opinions in Plant Biology. (2003);  6 7-12
  • 20 Grsic-Rausch S., Kobelt P., Siemens J. M., Bischoff M., Ludwig-Müller J.. Expression and localization of nitrilases during symptom development of the clubroot disease in Arabidopsis.  Plant Physiology. (2000);  122 369-378
  • 21 Guillet G., Poupart J., Basurco J., De Luca V.. Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes.  Plant Physiology. (2000);  122 933-943
  • 22 Hansen B. G., Halkier B. A.. New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana.  Planta. (2005);  221 603-606
  • 23 Hull A. K., Vij R., Celenza J. L.. Arabidopsis cytochrome P450 s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 2379-2384
  • 24 Igoshi M., Yamaguchi I., Takahashi N., Hirose K.. Plant growth substances in the young fruit of Citus unshiu.  Agricultural and Biological Chemistry. (1971);  35 629-631
  • 25 Kawaguchi M., Fujioka S., Sakurai Yamaki Y. T., Syono K.. Presence of a pathway for the biosynthesis of auxin via indole-3-acetamide in trifoliata orange.  Plant and Cell Physiology. (1993);  34 121-128
  • 26 Kawaguchi M., Kobayashi M., Sakurai A., Syono K.. The presence of an enzyme that converts indole-3-acetamide into IAA in wild and cultivated rice.  Plant and Cell Physiology. (1991);  32 143-149
  • 27 King J. J., Stimart D. P., Fisher R. H., Bleecker A. B.. A mutation altering auxin homeostasis and plant morphology in Arabidopsis.  Plant Cell. (1995);  7 2023-2037
  • 28 Koga J., Syono K., Ichikawa T., Adachi T.. Involvement of L-tryptophan aminotransferase in indole-3-acetic acid biosynthesis in Enterobacter cloacae.  Biochemica et Biophysica Acta. (1994);  1209 241-247
  • 29 Kutz A., Müller A., Henning P., Kaiser W. M., Piotrowski M., Weiler E. W.. A role for nitrilases 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana.  The Plant Journal. (2002);  30 95-106
  • 30 Lehman A., Black R., Ecker J. R.. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl.  Cell. (1996);  85 183-194
  • 31 Ljung K., Bhalerao R. P., Sandberg G.. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth.  The Plant Journal. (2001);  28 465-474
  • 32 Ljung K., Hull A. K., Celenza J., Yamada M., Estelle M., Normanly J., Sandberg G.. Sites and regulation of auxin biosynthesis in Arabidopsis roots.  Plant Cell. (2005);  17 1090-1104
  • 33 Lopez-Meyer M., Nessler C. L.. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress.  The Plant Journal. (1997);  11 1167-1175
  • 34 Ludwig-Müller J., Hilgenberg W.. A plasma membrane-bound enzyme oxidizes l-tryptophan to indole-3-acetaldoxime.  Physiologia Plantarum. (1988);  74 240-250
  • 35 Magie A. R., Wilson E. E., Kosuge T.. Indoleacetamide as an intermediate in the synthesis of indole acetic acid in Pseudomonas savastanoi.  Science. (1963);  141 1281-1282
  • 36 Mikkelsen M. D., Hansen C. H., Wittstock U., Halkier B. A.. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid.  Journal of Biological Chemistry. (2000);  275 33712-33717
  • 37 Mikkelsen M. D., Naur P., Halkier B. A.. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis.  The Plant Journal. (2004);  37 770-777
  • 38 Müller A., Weiler E. W.. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana.  Planta. (2000 a);  211 855-863
  • 39 Müller A., Weiler E. W.. IAA-Synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan.  Biological Chemistry. (2000 b);  381 679-686
  • 40 Müller A., Düchting P., Weiler E. W.. A multiplex GC‐MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana.  Planta. (2002);  216 44-56
  • 41 Müller A., Hillebrand H., Weiler E. W.. Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana.  Planta. (1998);  206 362-369
  • 42 Muday G.. Auxins and tropisms.  Journal of Plant Growth Regulation. (2001);  20 226-243
  • 43 Nonhebel H. M., Cooney T. P., Simpson R.. The route, control and compartmentation of auxin synthesis.  Australian Journal of Plant Physiology. (1993);  20 527-539
  • 44 Normanly J., Cohen J. D., Fink G. R.. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid.  Proceedings of the National Academy of Sciences of the USA. (1993);  90 10355-10359
  • 45 Pan P., Dunn M. F.. β-Site covalent reactions trigger transitions between open and closed confirmations of the tryptophan synthase bienzyme complex.  Biochemistry. (1996);  35 5002-5013
  • 46 Park W. J., Kriechbaumer V., Müller A., Piotrowski M., Meeley R. B., Gierl A., Glawischnig E.. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.  Plant Physiology. (2003);  133 794-802
  • 47 Piotrowski M., Schönfelder S., Weiler E. W.. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase.  Journal of Biological Chemistry. (2001);  276 2616-2621
  • 48 Pollmann S., Müller A., Piotrowski M., Weiler E. W.. Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana.  Planta. (2002);  216 155-161
  • 49 Pollmann S., Neu D., Weiler E. W.. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid.  Phytochemistry. (2003);  62 293-300
  • 50 Saotome M., Shirahata K., Nishimura R., Yahaba M., Kawaguchi M., Syono K., Kitsuwa T., Ishii Y., Nakamura T.. The identification of indole-3-acetic acid and indole-3-acetamide in the hypocotyls of japanese cherry.  Plant and Cell Physiology. (1993);  34 157-159
  • 51 Schmitt R. C., Müller A., Hain R., Bartling D., Weiler E. W.. Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme.  The Plant Journal. (1996);  9 683-691
  • 52 Sekimoto H., Seo M., Dohmae N., Takio K., Kamiya Y., Koshiba T.. Cloning and molecular characterization of plant aldehyde oxidase.  Journal of Biological Chemistry. (1997);  272 15280-15285
  • 53 Sekimoto H., Seo M., Kawakami N., Komano T., Desloire S., Liotenberg S., Marion-Poll A., Caboche M., Kamiya Y., Koshiba T.. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana.  Plant and Cell Physiology. (1998);  39 433-442
  • 54 Seo M., Akaba S., Oritani T., Delarue M., Bellini C., Caboche M., Koshiba T.. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana.  Plant Physiology. (1998);  116 687-693
  • 55 Seo M., Koiwai H., Akaba S., Komano T., Oritani T., Kamiya Y., Koshiba T.. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana.  The Plant Journal. (2000);  23 481-488
  • 56 Shrestha R., Dixon R. A., Chapman K. D.. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana.  Journal of Biological Chemistry. (2003);  278 34990-34997
  • 57 Songstad D. D., De Luca V., Brisson N., Kurz W. G. W., Nessier C. L.. High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase.  Plant Physiology. (1990);  94 1410-1413
  • 58 Tam Y. Y., Normanly J.. Determination if indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry.  Journal of Chromatography A. (1998);  800 101-108
  • 59 Thimann K. V.. Hormone Action in the Whole Life of Plants. Amherst; The University of Massachusettes Press (1977)
  • 60 Tobeña-Santamaria R., Bliek M., Ljung K., Sandberg G., Mol J. N. M., Souer E., Koes R.. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture.  Genes and Development. (2002);  16 753-763
  • 61 Truelsen T. A.. Indole-3-pyruvic acid as an intermediate in the conversion of tryptophan to indole-3-acetic acid. II. Distribution of tryptophan transaminase activity in plants.  Physiologia Plantarum. (1973);  28 67-70
  • 62 Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Müller A., Weiler E. W., Piotrowski M.. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilases subfamily encoded by the NIT2/NIT1/NIT3-gene cluster.  Planta. (2001);  212 508-516
  • 63 Weiler E. W., Schröder J.. Hormone genes and the crown gall disease.  Trends in Biochemical Sciences. (1987);  12 271-275
  • 64 Went F. W., Thimann K. V.. Phytohormones. New York; MacMillan (1937)
  • 65 Woodward A. W., Bartel B.. Auxin: regulation, action, and interaction.  Annals of Botany. (2005);  95 707-735
  • 66 Yamazaki Y., Sudo H., Yamazaki M., Aimi N., Saito K.. Camptothecin biosynthetic genes in hairy roots of Ophiorriza pumila: cloning, characterization and differential expression in tissues and by stress compounds.  Plant and Cell Physiology. (2003);  44 395-403
  • 67 Zhao Y., Christensen S. K., Fankhauser C., Cashman J. R., Cohen J. D., Weigel D., Chory J.. A role for flavin-monooxygenase-like enzymes in auxin biosynthesis.  Science. (2001);  291 306-309
  • 68 Zhao Y., Hull A. K., Gupta N. R., Goss K. A., Alonso J., Ecker J. R., Normanly J., Chory J., Celenza J. L.. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3.  Genes and Development. (2002);  16 3100-3112

S. Pollmann

Lehrstuhl für Pflanzenphysiologie
Ruhr-Universität Bochum

Universitätsstraße 150, ND 3/55

44801 Bochum

Germany

Email: stephan.pollmann@rub.de

Guest Editor: R. Reski