Plant Biol (Stuttg) 2006; 8(3): 360-370
DOI: 10.1055/s-2006-923969
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Noise Yields Order - Auxin, Actin, and Polar Patterning

P. Nick1
  • 1Institut of Botany 1, University of Karlsruhe, Kaiserstraße 2, 76128 Karlsruhe, Germany
Further Information

Publication History

Received: December 16, 2005

Accepted: January 26, 2006

Publication Date:
15 May 2006 (online)

Abstract

Plant patterns have to integrate environmental cues and to cope with a high level of noise in the sensory outputs of individual cells. In the first part of this review, we demonstrate that local self-amplification linked to lateral inhibition can meet this requirement. In the second part, we describe the search for candidates for such self-amplification loops in the context of auxin-dependent cell growth using Graminean coleoptiles as a model. Auxin-dependent reorganization of actin microfilaments interfered with the auxin sensitivity of growth. Auxin might control the intracellular transport of factors important for auxin sensing via the actomyosin system. By means of a rice mutant with elevated auxin responsiveness, we identified an auxin response factor (OsARF1), whose expression is upregulated by auxin as a second candidate for a self-amplification loop. We studied the cross-talk between auxin signalling and environmental cues in the rice mutant hebiba, where the photoinhibition of growth is impaired. We found that jasmonate plays a central role in this cross-talk correlated to a downregulation of auxin responsiveness. To obtain an insight into auxin-dependent coordination, we analyzed a tobacco cell line with axial cell divisions. By a combination of modelling and physiological manipulation, we could demonstrate that auxin synchronizes the divisions of adjacent cells on the background of strong heterogeneity of individual cells. We conclude that self-amplification of auxin signalling coupled to mutual competition for available auxin provides a versatile tool to fulfill the special requirements posed by patterning in plants.

References

  • 1 Bak S., Tax F. E., Feldmann K. A., Galbraith D. W., Feyereisen R.. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. .  Plant Cell. (2001);  13 101-111
  • 2 Behringer F. J., Davies P. J.. Indol-3-acetic acid levels after phytochrome-mediated changes in stem elongation rate of dark- and light-grown Pisum seedlings.  Planta. (1992);  188 85-92
  • 3 Berleth T., Sachs T.. Plant morphogenesis: long-distance coordination and local patterning.  Current Opinion in Plant Biology. (2001);  4 57-62
  • 4 Bünning E.. Die Entstehung von Mustern in der Entwicklung von Pflanzen. Ruhland, W., ed. Handbuch der Pflanzenphysiologie, Vol. 15/1. Berlin, Heidelberg, New York; Springer Verlag (1965): 383-408
  • 5 Campanoni P., Blasius B., Nick P.. Auxin transport synchronizes the pattern of cell division in a tobacco cell line.  Plant Physiology. (2003);  133 1251-1260
  • 6 Campanoni P., Nick P.. Auxin-dependent cell division and cell elongation: NAA and 2,4-D activate different pathways.  Plant Physiology. (2005);  137 939-948
  • 7 Chaban C., Waller F., Furuya M., Nick P.. Auxin responsiveness of a novel cytochrome P450 in rice coleoptiles.  Plant Physiology. (2003);  133 2000-2009
  • 8 Cholodny N.. Wuchshormone und Tropismen bei den Pflanzen.  Biologisches Zentralblatt. (1927);  47 604-626
  • 9 Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., Davies J., Sherratt L., Coleman M., Turner J. G.. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. .  The Plant Journal. (2002);  32 457-466
  • 10 Dolk H. E.. Geotropism and the growth substance.  Recueils des Travaux Botaniques Néerlandais. (1936);  33 509-585
  • 11 Fleming A. J., McQueen-Mason S., Mandel T., Kuhlemeier C.. Induction of leaf primordia by the cell wall protein expansin.  Science. (1997);  276 1415-1418
  • 12 Friml J.. Auxin transport-shaping the plant.  Current Opinion in Plant Biology. (2003);  6 7-12
  • 13 Gälweiler L., Guan C. H., Muller A., Wisman E., Mendgen K., Yephremov A., Palme K.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue.  Science. (1998);  282 2226-2230
  • 14 Frugis G., Chua N.-M.. Ubiquitin-mediated proteolysis in plant hormone signal transduction.  Trends in Cell Biology. (2002);  12 308-311
  • 15 Furuya M., Pjon C. J., Fujii T., Ito M.. Phytochrome action in Oryza sativa L.: III. The separation of photoperceptive site and growing zone in coleoptiles, and auxin transport as effector system.  Development, Growth and Differentiation. (1969);  11 62-76
  • 16 Genoud T., Métraux J.-P.. Crosstalk in plant cell signalling: structure and function of the genetic network.  Trends in Plant Science. (1999);  4 503-507
  • 17 Genoud T., Millar A. J., Nishizawa N., Kay S. A., Schäfer E., Nagatani A., Chua N.-H.. An Arabidopsis mutant hypersensitive to red and far-red light signals.  Plant Cell. (1998);  10 889-904
  • 18 Gierer A., Berking S., Bode H., David C. N., Flick K., Hansmann G., Schaller H., Trenkner E.. Regeneration of hydra from reaggregated cells.  Nature. (1972);  239 98-101
  • 19 Gierer A., Meinhard H.. A theory of biological pattern formation.  Kybernetik. (1972);  12 30-39
  • 20 Godbolé R., Michalke W., Nick P., Hertel R.. Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles.  Plant Biology. (2000);  2 176-181
  • 21 Grabski S., Schindler M.. Auxins and cytokinins as antipodal modulators of elasticity within the actin network of plant cells.  Plant Physiology. (1996);  110 965-970
  • 22 Green P. B.. Organogenesis - a biophysical view.  Annual Review of Plant Physiology. (1980);  20 365-394
  • 23 Gutjahr C., Riemann M., Müller A., Weiler E. W., Nick P.. Cholodny-Went revisited - a role for jasmonate in gravitropism of rice coleoptiles.  Planta. (2005);  222 575-585
  • 24 Hardham A. R., Green P. B., Lang J. M.. Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense.  Planta. (1980);  149 181-195
  • 25 Hardtke C. S., Berleth T.. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.  EMBO Journal. (1998);  17 1405-1411
  • 26 Himmelspach R., Wymer C. L., Lloyd C. W., Nick P.. Gravity-induced reorientation of cortical microtubules observed in vivo.  The Plant Journal. (1999);  18 449-453
  • 27 Hoffmann-Benning S., Kende H.. On the role of abscisic acid and gibberellin in the regulation of growth in rice.  Plant Physiology. (1992);  99 1156-1161
  • 28 Holweg C., Nick P.. An Arabidopsis myosin XI mutant is impaired in organelle movement and polar auxin transport.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 10488-10493
  • 29 Holweg C., Honsel A., Nick P.. A myosin inhibitor impairs auxin-induced cell division.  Protoplasma. (2003);  222 193-204
  • 30 Holweg C., Süßlin C., Nick P.. Capturing in-vivo dynamics of the actin cytoskeleton.  Plant and Cell Physiology. (2004);  45 855-863
  • 31 Ito T., Kito K., Adati N., Mitsui Y., Hagiwara H., Sakaki Y.. Fluorescent differential display: arbitrarily primed RTPCR fingerprinting on an automated DNA sequencer.  FEBS Letters. (1994);  351 231-236
  • 32 Kuno N., Muramatsu T., Hamazato F., Furuya M.. Identification by large-scale screening of phytochrome-regulated genes in etiolated seedlings of Arabidopsis using a fluorescent differential display technique.  Plant Physiology. (2000);  122 15-24
  • 33 Kutschera U., Bergfeld R., Schopfer P.. Cooperation of epidermal and inner tissues in auxin-mediated growth of maize coleoptiles.  Planta. (1987);  170 168-180
  • 34 Lockhard J.. Intracellular mechanism of growth inhibition by radiant energy.  Plant Physiology. (1960);  35 129-135
  • 35 Mandoli D. F., Briggs W. R.. Phytochrome control of two low-irradiance responses in etiolated oat seedlings.  Plant Physiology. (1981);  67 733-739
  • 36 Mattsson J., Sung Z. R., Berleth T.. Responses of plant vascular systems to auxin transport inhibition.  Development. (1999);  126 2979-2991
  • 37 Meinhard H.. Morphogenesis of lines and nets.  Differentiation. (1976);  6 117-123
  • 38 Meinhard H.. The threefold subdivision of segments and the initiation of legs and wings in insects.  Trends in Genetics. (1986);  3 36-41
  • 39 Mohr H.. Lectures on Photomorphogenesis. Heidelberg; Springer Verlag (1972)
  • 40 Morris D. A.. Transmembrane auxin carrier systems-dynamic regulators of polar auxin transport.  Plant Growth Regulation. (2000);  32 161-172
  • 41 Müller A., Düchting P., Weiler E. W.. A multiplex GC‐MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana.  Planta. (2002);  216 44-56
  • 42 Nakajima K., Sena G., Nawy T., Benfey P. N.. Intercellular movement of the putative transcription factor SHR in root patterning.  Nature. (2001);  413 307-311
  • 43 Nick P.. Role of the microtubular cytoskeleton in coleoptile phototropism. Häder, D. and Lebert, M., eds. Photomovement. Amsterdam; Elsevier (2001): 813-830
  • 44 Nick P., Ehmann B., Schäfer E.. Cell communication, stochastic cell responses, and anthocyanin pattern in mustard cotyledons.  Plant Cell. (1993);  5 541-552
  • 45 Nick P., Schäfer E., Furuya M.. Auxin redistribution during first positive phototropism in corn coleoptiles: microtubule reorientation and the Cholodny-Went theory.  Plant Physiology. (1992);  99 1302-1308
  • 46 Normanly J.. Auxin metabolism.  Physiologia Plantarum. (1997);  100 431-442
  • 47 Orci L., Tagaya M., Amherdt M., Perrelet A., Donaldson J. G., Lippincott-Schwartz J., Klausner R. D., Rothman J. E.. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. .  Cell. (1991);  64 1183-1195
  • 48 Paciorek T., Zažimalová E., Ruthardt N., Petrášek J., Stierhof Y. D., Kleine-Vehn J., Morris D. A., Emans N., Jürgens G., Geldner N., Friml J.. Auxin inhibits endocytosis and promotes its own efflux from cells.  Nature. (2005);  435 1251-1256
  • 49 Opatrný Z., Opatrná J.. The specificity of the effect of 2,4-D and NAA on the growth, micromorphology, and occurrence of starch in long-term Nicotiana tabacum L. cell strains.  Biologia Plantarum. (1976);  18 359-365
  • 50 Petrášek J., Freudenreich A., Heuing A., Opatrný Z., Nick P.. Heatshock protein 90 is associated with microtubules in tobacco cells.  Protoplasma. (1998);  202 161-174
  • 51 Petrášek J., Elčkner M., Morris D. A., Zažimalová E.. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells.  Planta. (2002);  216 302-308
  • 52 Philippar K., Fuchs I., Lüthen H., Hoth S., Bauer C. S., Haga K., Thiel G., Ljung K., Sandberg G., Böttger M., Becker D., Hedrich R.. Auxin-induced K+ channel expression respresents an essential step in coleoptile growth and gravitropism.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 12186-12191
  • 53 Pjon C. J., Furuya M.. Phytochrome action in Oryza sativa L.: I. Growth responses of etiolated coleoptiles to red, far-red and blue light.  Plant Cell Physiology. (1967);  8 709-718
  • 54 Reinhardt D., Pesce E. R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C.. Regulation of phyllotaxis by polar auxin transport.  Nature. (2003);  426 255-260
  • 55 Reinhardt D., Mandel T., Kuhlemeier C.. Auxin regulates the initiation and radial position of plant lateral organs.  Plant Cell. (2000);  12 507-518
  • 56 Riemann M., Müller A., Korte A., Furuya M., Weiler E. W., Nick P.. The rice mutant hebiba lacks jasmonate induction.  Plant Physiology. (2003);  133 1820-1830
  • 57 Rorabaugh P. A., Salisbury F. B.. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls.  Plant Physiology. (1989);  91 1329-1338
  • 58 Sachs T.. Integrating cellular and organismic aspects of vascular differentiation.  Plant Cell Physiology. (2000);  41 649-656
  • 59 Salisbury F. B., Gillespie L., Rorabaugh P. A.. Gravitropism in higher plant shoots. V. Changing sensitivity to auxin.  Plant Physiology. (1988);  88 1186-1194
  • 60 Scheres B., Wolkenfelt H., Willemsen V., Terlouw M., Lawson E., Dean C., Weisbeek P.. Embryonic origin of the Arabidopsis root and root meristem initials.  Development. (1994);  120 2475-2487
  • 61 Schoute J. C.. Beiträge zur Blattstellungslehre. I. Die Theorie.  Recueils des Travaux Botaniques Néerlandais. (1913);  10 153-325
  • 62 Schwechheimer C., Serino G., Deng X.-W.. Multiple ubiquitin ligasemediated processes require COP9 signalosome and AXR1 function.  Plant Cell. (2002);  14 2553-2563
  • 63 Sessions A., Nemhauser J. L., McColl A., Roe J. L., Feldman K. A., Zambryski P. C.. ETTIN patterns the Arabidopsis floral meristem and reproductive organs.  Development. (1997);  124 4481-4491
  • 64 Snow M., Snow R.. Experiments on phyllotaxis. I. The effect of isolating a primordium.  Philosophical Transactions of the Royal Society of London, Series B. (1931);  221 1-43
  • 65 Sweeney B. M., Thimann K. V.. The effect of auxin on cytoplasmic streaming.  Journal of General Physiology. (1937);  21 123-135
  • 66 Stals H., Inzé D.. When plant cells decide to divide.  Trends in Plant Science. (2001);  6 359-364
  • 83 Steinmann T., Geldner N., Grebe M., Mangold S., Jackson C. L., Paris S., Gälweiler L., Palme K., Jürgens G.. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF.  Science. (1999);  286 316-318
  • 67 Takano M., Kanegae H., Shinomura T., Miyao A., Hirochika H., Furuya M.. Isolation and characterization of rice phytochrome A mutants.  Plant Cell. (2001);  13 521-534
  • 68 Thimann K. V., Biradivolu R.. Actin and the elongation of plant cells II: the role of divalent ions.  Protoplasma. (1994);  183 5-9
  • 69 Thimann K. V., Reese K., Nachmikas V. T.. Actin and the elongation of plant cells.  Protoplasma. (1992);  171 151-166
  • 70 Trewavas A.. How do plant growth substances act?.  Plant, Cell and Environment. (1981);  4 203-228
  • 71 Turing A. M.. The chemical basis of morphogenesis.  Philosophical Transactions of the Royal Society of London, Series B. (1952);  237 37-72
  • 72 Tyryaki I., Staswick P. E.. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. .  Plant Physiology. (2002);  130 887-894
  • 73 Ulmasov T., Hagen G., Guilfoyle T. J.. ARF1, a transcription factor that binds to auxin response elements.  Science. (1997);  276 1865-1868
  • 74 Ulmasov T., Hagen G., Guilfoyle T. J.. Dimerization and DNA binding of auxin response factors.  The Plant Journal. (1999 a);  19 309-319
  • 75 Ulmasov T., Hagen G., Guilfoyle T. J.. Activation and repression of transcription by auxin-response factors.  Proceedings of the National Academy of Sciences of the USA. (1999 b);  96 5844-5849
  • 76 Van den Berg C., Willensen V., Hage W., Weisbeek P., Scheres B.. Cell fate in the Arabidopsis root meristem is determined by directional signalling.  Nature. (1995);  378 62-65
  • 77 Waller F., Furuya M., Nick P.. Expression of OsARF1 an auxin response factor from rice (Oryza sativa L.) correlates positively with auxin-regulated differential growth.  Plant Molecular Biology. (2002 a);  50 415-425
  • 78 Waller F., Nick P.. Response of actin microfilaments during phytochrome-controlled growth of maize seedlings.  Protoplasma. (1997);  200 154-162
  • 79 Waller F., Riemann M., Nick P.. A role for actin-driven secretion in auxin-induced growth.  Protoplasma. (2002 b);  219 72-81
  • 80 Waller F., Wang Q. Y., Nick P.. Actin and signal-controlled cell elongation in coleoptiles. Staiger, C. J., Baluška, F., Volkmann, D., and Barlow, P., eds. Actin: A Dynamic Framework for Multiple Plant Cell Functions. Dordrecht; Kluwer (2000): 477-496
  • 81 Wang Q. Y., Nick P.. The auxin response of actin is altered in the rice mutant Yin-Yang.  Protoplasma. (1998);  204 22-33
  • 82 Went F.. On growth accelerating substances in the coleoptile of Avena sativa. .  Proceedingar Koniglig Nederlansk Akademie der Wetenschaften. (1926);  30 10-19

P. Nick

Institut of Botany 1
University of Karlsruhe

Kaiserstraße 2

76128 Karlsruhe

Germany

Email: peter.nick@bio.uni-karlsruhe.de

Guest Editor: R. Reski