RSS-Feed abonnieren
DOI: 10.1055/s-2006-923961
Georg Thieme Verlag Stuttgart KG · New York
Concepts and Approaches Towards Understanding the Cellular Redox Proteome
Publikationsverlauf
Received: September 23, 2005
Accepted: January 25, 2006
Publikationsdatum:
11. Mai 2006 (online)
Abstract
The physiological activity of a significant subset of cell proteins is modified by the redox state of regulatory thiols. The cellular redox homeostasis depends on the balance between oxidation of thiols through oxygen and reactive oxygen species and reduction by thiol-disulfide transfer reactions. Novel and improved methodology has been designed during recent years to address the level of thiol/disulfide regulation on a genome-wide scale. The approaches are either based on gel electrophoresis or on chromatographic techniques coupled to high end mass spectrometry. The review addresses diagonal 2D‐SDS-PAGE, targeted identification of specific redox-interactions, affinity chromatography with thioredoxins and glutaredoxins, gel-based and non-gel based labelling techniques with fluorophores (such as Cy3, Cy5, ICy), radioisotopes, or with isotope-coded affinity tags (ICAT), differential gel electrophoresis (DIGE) and combined fractional diagonal chromatography (COFRADIC). The extended methodological repertoire promises fast and new insight into the intricate regulation network of the redox proteome of animals, bacteria, and plants.
Key words
2D gel electrophoresis - affinity chromatography - protein thiol - redox proteome - redox regulation - thioredoxin
References
- 1 Anderson L. E., Manabe K.. Disulfide-linked peptides in the chloroplast thylakoid membrane. Biochimica et Biophysica Acta. (1979); 579 1-9
- 2 Apel K., Hirt H.. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. (2004); 55 373-399
- 3 Baier M., Dietz K. J.. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. Journal of Experimental Botany. (2005); 56 1449-1462
- 4 Balmer Y., Koller A., del Val G., Manieri W., Schürmann P., Buchanan B. B.. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proceedings of the National Academy of Sciences of the USA. (2003); 100 370-375
- 6 Balmer Y., Vensel W. H., Tanaka C. K., Hurkman W. J., Gelhaye E., Rouhier N., Jacquot J. P., Manieri W., Schürmann P., Droux M., Buchanan B. B.. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proceedings of the National Academy of Sciences of the USA. (2004 a); 101 2642-2647
- 5 Balmer Y., Koller A., del Val G., Schürmann P., Buchanan B. B.. Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosynthesis Research. (2004 b); 79 275-280
- 7 Brandes H. K., Larimer F. W., Geck M. K., Stringer C. D., Schürmann P., Hartman F. C.. Direct identification of the primary nucleophile of thioredoxin f. Journal of Biological Chemistry. (1993); 268 18411-18414
- 8 Buchanan B. B., Balmer Y.. Redox regulation: a broadening horizon. Annual Review of Plant Biology. (2005); 56 187-220
- 9 Capitani G., Markovic-Housley Z., DelVal G., Morris M., Jansonius J. N., Schürmann P.. Crystal structures of two functionally different thioredoxins in spinach chloroplasts. Journal of Molecular Biology. (2000); 302 135-154
- 10 Chan H. L., Gharbi S., Gaffney P. R., Cramer R., Waterfield M. D., Timms J. F.. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics. (2005); 5 2908-2926
- 11 Collin V., Issakidis-Bourguet E., Marchand C., Hirasawa M., Lancelin J. M., Knaff D. B., Miginiac-Maslow M.. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. Journal of Biological Chemistry. (2003); 278 23747-23752
- 12 Collin V., Lamkemeyer P., Miginiac-Maslow M., Hirasawa M., Knaff D. B., Dietz K. J., Issakidis-Bourguet E.. Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiology. (2004); 136 4088-4095
- 13 Cummings R. C., Andon N. L., Haynes P. A., Park M., Fischer W. H., Schubert D.. Protein disulfide bond formation in the cytoplasm during oxidative stress. The Journal of Biological Chemistry. (2004); 279 21749-21758
- 14 del Val G., Yee B. C., Lozano R. M., Buchanan B. B., Ermel R. W., Lee Y. M., Frick O. L.. Thioredoxin treatment increases digestibility and lowers allergenicity of milk. Journal of Allergy and Clinical Immunology. (1999); 103 690-697
- 15 Dietz K. J.. Plant peroxiredoxins. Annual Review of Plant Biology. (2003); 54 93-107
-
16 Dietz K. J..
Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress. Smirnoff, N., ed. Antioxidants and Reactive Oxygen Species in Plants. Oxford; Blackwell Publishing (2005): 25-52 - 17 Dietz K. J., Link G., Pistorius E. K., Scheibe R.. Redox regulation in oxigenic photosynthesis. Progress in Botany. (2002); 63 207-245
- 18 Finkemeier I., Goodman M., Lamkemeyer P., Kandlbinder A., Sweetlove L. J., Dietz K. J.. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. Journal of Biological Chemistry. (2005); 280 12168-12180
- 19 Gelhaye E., Rouhier N., Gerard J., Jolivet Y., Gualberto J., Navrot N., Ohlsson P. I., Wingsle G., Hirasawa M., Knaff D. B., Wang H., Dizengremel P., Meyer Y., Jacquot J. P.. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the USA. (2004); 101 14545-14550
- 20 Gelhaye E., Rouhier N., Navrot N., Jacquot J. P.. The plant thioredoxin system. Cellular and Molecular Life Sciences. (2005); 62 24-35
- 21 Gevaert K., Ghesquiere B., Staes A., Martens L., Van Damme J., Thomas G. R., Vandekerckhove J.. Reversible labelling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics. (2004); 4 897-908
- 22 Gilles-Gonzalez M. A., Gonzalez G.. Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. Journal of Inorganic Biochemistry. (2005); 99 1-22
- 23 Gobin P., Ng P. K. W., Buchanan B. B., Kobrehel K.. Sulfhydryl-disulfide changes in proteins of developing wheat grain. Plant Physiology and Biochemistry. (1997); 35 777-783
- 24 Gygi S. P., Rist B., Gerber S. A., Turecek F., Gelb M. H., Aebersold R.. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology. (1999); 17 994-999
- 25 Hofmann B., Hecht H. J., Flohe L.. Peroxiredoxins. Biological Chemistry. (2002); 383 347-364
- 26 Holtzapffel R. C., Castelli J., Finnegan P. M., Millar A. H., Whelan J., Day D. A.. A tomato alternative oxidase protein with altered regulatory properties. Biochimica et Biophysica Acta. (2003); 1606 153-162
- 27 Jacquot J. P., Lancelin J.-M., Meyer Y.. Transley review. No. 94. Thioredoxins: structure and function in plant cells. New Phytologist. (1997); 136 543-570
- 28 Jansson S., Andersen B., Scheller H. V.. Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiology. (1996); 112 409-420
- 29 Katti S. K., Robbins A. H., Yang Y., Wells W. W.. Crystal structure of thioltransferase at 2.2 Å resolution. Protein Science. (1995); 4 1998-2005
- 30 Kobrehel K., Wong J. H., Balogh A., Kiss F., Yee B. C., Buchanan B. B.. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiology. (1992); 99 919-924
- 31 König J., Baier M., Horling F., Kahmann U., Harris G., Schürmann P., Dietz K. J.. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proceedings of the National Academy of Sciences of the USA. (2002); 99 5738-5743
- 32 Kumar J. K., Tabor S., Richardson C. C.. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proceedings of the National Academy of Sciences of the USA. (2004); 101 3759-3764
- 33 Kumar R. A., Koc A., Cerny R. L., Gladyshev V. N.. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. Journal of Biological Chemistry. (2002); 277 37527-37535
- 34 Laloi C., Rayapuram N., Chartier Y., Grienenberger J. M., Bonnard G., Meyer Y.. Identification and characterization of a mitochondrial thioredoxin system in plants. Proceedings of the National Academy of Sciences of the USA. (2001); 98 14144-14149
- 35 Lemaire S. D., Guillon B., Le Marechal P., Keryer E., Miginiac-Maslow M., Decottignies P.. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the USA. (2004); 101 7475-7480
- 36 Lindahl M., Florencio FJ.. Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proceedings of the National Academy of Sciences of the USA. (2003); 100 16107-16112
- 37 Maeda K., Finnie C., Svensson B.. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms. Biochemical Journal. (2004); 378 497-507
- 38 Maeda K., Finnie C., Svensson B.. Identification of thioredoxin h-reducible disulphides in proteomes by differential labelling of cysteines: insight into recognition and regulation of proteins in barley seeds by thioredoxin h. Proteomics. (2005); 5 1634-1644
- 39 Marchand C., Le Marechal P., Meyer Y., Miginiac-Maslow M., Issakidis-Bourguet E., Decottignies P.. New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics. (2004); 4 2696-2706
- 40 Marouga R., David S., Hawkins E.. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry. (2005); 382 669-678
- 41 Marx C., Wong J. H., Buchanan B. B.. Thioredoxin and germinating barley: targets and protein redox changes. Planta. (2003); 216 454-460
- 42 Matsuo T., Graham D., Patterson B. D., Hockley D. B.. An electrophoretic method to detect cold-induced dissociation of proteins in crude extracts of higher plants. Analytical Biochemistry. (1994); 223 181-184
- 43 Millenaar F. F., Lambers H.. The alternative oxidase: in vivo regulation and function. Plant Biology. (2003); 5 2-15
- 44 Miranda-Vizuete A., Sadek C. M., Jimenez A., Krause W. J., Sutovsky P., Oko R.. The mammalian testis-specific thioredoxin system. Antioxidants and Redox Signaling. (2004); 6 25-40
- 45 Mora-Garcia S., Rodriguez-Suarez R., Wolosiuk R. A.. Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1,6-bisphosphatase by mutant Escherichia coli thioredoxins. Journal of Biological Chemistry. (1998); 273 16273-16280
- 46 Motohashi K., Kondoh A., Stumpp M. T., Hisabori T.. Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences of the USA. (2001); 98 11224-11229
- 47 Narikawa R., Okamoto S., Ikeuchi M., Ohmori M.. Molecular evolution of PAS domain-containing proteins of filamentous cyanobacteria through domain shuffling and domain duplication. DNA Research. (2004); 11 69-81
- 48 Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Seraphin B.. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology. (1999); 17 1030-1032
- 49 Rouhier N., Gelhaye E., Jacquot J. P.. Glutaredoxin-dependent peroxiredoxin from poplar. Protein-protein interaction and catalytic mechanism. The Journal of Biological Chemistry. (2002); 277 13609-13614
- 50 Rouhier N., Gelhaye E., Jacquot J. P.. Plant glutaredoxins: still mysterious reducing systems. Cellular and Molecular Life Sciences. (2004); 61 1266-1277
- 51 Rouhier N., Villarejo A., Srivastava M., Gelhaye E., Keech O., Droux M., Finkemeier I., Samuelsson G., Dietz K. J., Jacquot J. P., Wingsle G.. Identification of plant glutaredoxin targets. Antioxidants and Redox Signaling. (2005); 7 919-929
- 52 Sanchez S., Arenas J., Abel A., Criado M. T., Ferreiros C. M.. Analysis of outer membrane protein complexes and heat-modifiable proteins in Neisseria strains using two-dimensional diagonal electrophoresis. Journal of Proteome Research. (2004); 4 91-95
- 53 Schafer F. Q., Buettner G. R.. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine. (2001); 30 1191-1212
- 54 Scheibe R.. Malate valves to balance cellular energy supply. Physiologia Plantarum. (2004); 120 21-26
- 55 Schürmann P.. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Antioxidants and Redox Signaling. (2003); 5 69-78
- 56 Schürmann P., Jacquot J. P.. Plant thioredoxin systems revisited. Annual Review of Plant Physiology and Plant Molecular Biology. (2000); 51 371-400
- 57 Sethuraman M., McComb M. E., Heibeck T., Costello C. E., Cohen R. A.. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Molecular and Cellular Proteomics. (2004 a); 3 273-278
- 58 Sethuraman M., McComb M. E., Huang H., Huang S., Heibeck T., Costello C. E., Cohen R. A.. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. Journal of Proteome Research. (2004 b); 3 1228-1233
- 59 Stork T., Michel K. P., Pistorius E. K., Dietz K. J.. Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 for the presence of peroxiredoxins and their transcript regulation under stress. Journal of Experimental Botany. (2005); 56 3193-3206
- 60 Taylor B. L., Zhulin I. B.. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews. (1999); 63 479-506
- 61 Verdoucq L., Vignols F., Jacquot J. P., Chartier Y., Meyer Y.. In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. Journal of Biological Chemistry. (1999); 274 19714-19722
- 62 Weis M., Cotgreave I. C., Moore G. A., Norbeck K., Moldeus P.. Accessibility of hepatocyte protein thiols to monobromobimane. Biochimica et Biophysica Acta. (1993); 1176 13-19
- 63 Wong J. H., Balmer Y., Cai N., Tanaka C. K., Vensel W. H., Hurkman W. J., Buchanan B. B.. Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Letters. (2003); 547 151-156
- 65 Wong J. H., Cai N., Tanaka C. K., Vensel W. H., Hurkamn W. J., Buchanan B. B.. Thioredoxin reduction alters the solubility of proteins of wheat starchy endosperm: an early event in cereal germination. Plant and Cell Physiology. (2004 a); 45 407-415
- 64 Wong J. H., Cai N., Balmer Y., Tanaka C. K., Vensel W. H., Hurkman W. J., Buchanan B. B.. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry. (2004 b); 65 1629-1640
- 66 Xing S. P., Rosso M. G., Zachgo S.. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development. (2005); 132 1555-1565
- 68 Yano H., Wong J. H., Lee Y. M., Cho M. J., Buchanan B. B.. A strategy for the identification of proteins targeted by thioredoxin. Proceedings of the National Academy of Sciences of the USA. (2001 a); 98 4794-4799
- 67 Yano H., Wong J. H., Cho M. J., Buchanan B. B.. Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant and Cell Physiology. (2001 b); 42 879-883
- 69 Zhang S., Scheller H. V.. Light-harvesting complex II binds to several small subunits of photosystem I. Journal of Biological Chemistry. (2003); 279 3180-3187
K.-J. Dietz
Faculty of Biology - W5-134
Bielefeld University
Universitätsstraße 25
33501 Bielefeld
Germany
eMail: karl-josef.dietz@uni-bielefeld.de
Editor: B. Schulz