Plant Biol (Stuttg) 2006; 8(2): 212-223
DOI: 10.1055/s-2005-873041
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Responses of Alnus glutinosa to Anaerobic Conditions - Mechanisms and Rate of Oxygen Flux into the Roots

K. Dittert1 , J. Wötzel1 , B. Sattelmacher[] 1
  • 1Institute of Plant Nutrition and Soil Science, University of Kiel, Olshausenstraße 40, 24118 Kiel, Germany
Further Information

Publication History

Received: August 29, 2005

Accepted: October 31, 2005

Publication Date:
17 March 2006 (online)

Abstract

Upon exposure to waterlogged growing conditions two-year-old alder trees reduced total root mass. Roots were concentrated in the uppermost soil horizon, and only few coarse roots penetrated into deeper soil layers. Root porosity was only slightly affected and did not exceed 8 % in fine roots. Porosity of coarse roots was higher (27 %) but unaffected by growing conditions. The stem base area covered by lenticels increased strongly and so did the cross section diameter of the stem base. The latter showed a highly significant correlation with O2 transport into the roots, measured by a Clark type oxygen electrode. Exposure of the lower 5 cm of the stem base, where lenticels were concentrated, to pure N2 led to a cessation of O2 transport, confirming that lenticels were the major site of air entry into the stem. In alder plants grown under waterlogged conditions, temperature had a pronounced effect on O2 gas exchange of the root system. The temperature compensation point, i.e., the temperature where O2 transport equals O2 consumption by respiration, was 10.5 °C for the entire root system, when measured in a range of 0.15 - 0.20 mmol dissolved O2 L-1, which is typical for an open water surface equilibrated with air. O2 net flow was inversely related to O2 concentration in the rooting media, indicating that higher root and microbial respiration induced higher net fluxes of O2 into the root system. With 0.04 mmol dissolved O2 L-1 nutrient solution, the temperature compensation point increased to 20 °C. Measurement of O2 gradients in the rhizosphere of agar-embedded roots using O2 microelectrodes showed a preference for O2 release in the tip region of coarse roots. Increasing stem temperature over air temperature by 5 °C stimulated O2 flux into the roots as suggested by the model of thermo-osmotic gas transport. However determination of stem and air temperature in a natural alder swamp in northern Germany revealed that within the experimental period of almost one year, temperature gradients required for thermo-osmotic gas transport were very seldom. From this it is concluded that under natural conditions in northern Germany, oxygen diffusion along the stem into the root system is driven by O2 concentration gradients rather than by thermo-osmosis.

References

  • 1 Armstrong W.. Oxygen diffusion from roots of woody species.  Physiologia Plantarum. (1968);  21 539-543
  • 2 Armstrong W.. Aeration in higher plants.  Advances in Botanical Research. (1979);  7 225-332
  • 61 Armstrong J., Armstrong W.. Phragmites australis - A preliminary study of soil-oxidizing sites and internal gas transport pathways.  New Phytologist. (1988);  108 373-382
  • 3 Armstrong J., Armstrong W.. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud.  Aquatic Botany. (1991);  39 75-88
  • 4 Armstrong W., Armstrong J., Beckett P. M.. Measurements and modelling of oxygen release from roots of Phragmites australis. Cooper P. F. and Findlater, B. C., eds. The Use of Constructed Wetlands in Waste Water Pollution Control. Oxford; Pergamon Press (1990): 41-52
  • 6 Armstrong W., Justin S. H. F. W., Beckett P. M., Lythe S.. Root adaptation to waterlogging.  Aquatic Botany. (1991 a);  39 1573-1582
  • 5 Armstrong W., Armstrong J., Beckett P. M., Justin S. H. F. W.. Convective gas-flow in wetland plant aeration. Jackson, M. B., Davies, D. D., and Lambers, H., eds. Plant Life Under Oxygen Deprivation. The Hague, Netherlands; SPB Academic Publishing (1991 b): 283-303
  • 7 Armstrong W., Brändle R., Jackson M. B.. Mechanisms of flood tolerance in plants.  Acta Botanica Neerlandica. (1994);  43 307-358
  • 8 Armstrong J., Armstrong W., Beckett P. M., Halder H. E., Lythe S., Holt R., Sinclair A.. Pathways of aeration and the mechanisms and beneficial effects of humitity- and venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud.  Aquatic Botany. (1996);  54 177-197
  • 9 Armstrong W., Armstrong J.. Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of alder (Alnus glutinosa). .  Annals of Botany. (2005);  96 591-612
  • 10 Baxter-Burrell A., Yang Z. B., Springer P. S., Bailey-Serres J.. Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis.  Annals of Botany. (2002);  91 129-141
  • 11 Beckett P. M., Armstrong W., Justin S. H. F. W., Armstrong J.. On the relative importance of convective and diffusive gas flows in plant aeration.  New Phytologist. (1988);  110 463-468
  • 12 Bedford B. L., Boudin D. R., Beliveau B. D.. Net oxygen and carbon-dioxide balance in solutions bathing roots of wetland plants.  Journal of Ecology. (1991);  79 943-959
  • 13 Blom C. W. P. M.. Adaptation to flooding in plants from river areas.  Aquatic Botany. (1990);  38 29-47
  • 14 Brix H.. Light dependent variations in the composition of the internal atmosphere of Phragmites australis (Cav.) Trin. ex Steud.  Aquatic Botany. (1988);  30 319-329
  • 15 Broecker W. S., Peng T. H.. Gas exchange rates between air and sea.  Tellus. (1974);  26 21-35
  • 16 Christensen P. B., Revsbech N. P., Sand-Jensen K.. Microsensor analysis of oxygen in the rhizosphere of aquatic macrophyte Littorella uniflora (L.) Ascherson.  Plant Physiology. (1994);  105 847-852
  • 17 Colmer R. D.. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots.  Plant, Cell and Environment. (2003);  26 17-36
  • 60 Connell E. L., Colmer T. D., Walker D. I.. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination.  Aquatic Botany. (1999);  63 219-228
  • 18 Dacey J. W. H.. Pressurized ventilation in the yellow waterlily.  Ecology. (1981);  62 1137-1147
  • 19 Duursma E. K., Hoede C.. Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended soil particles of the sea. Part A: Theories and mathematical calculations.  Netherlands Journal of Sea Research. (1967);  3 423-457
  • 21 Gries C., Kappen L., Lösch R.. Mechanism of flood tolerance in reed Phragmites australis (Cav.) Trin. ex Steudle.  New Phytologist. (1990);  114 589-593
  • 22 Grosse W.. The mechanism of thermal transpiration (= thermal osmosis).  Aquatic Botany. (1996);  54 87-100
  • 23 Grosse W., Schröder R.. Oxygen supply of roots by gas transport in alder trees.  Zeitschrift für Naturforschung. (1984);  39c 1186-1188
  • 24 Grosse W., Schröder R.. Pflanzenleben unter anaeroben Umweltbedingungen, die physikalischen Grundlagen und anatomischen Vorraussetzungen - Ein Überblick.  Berichte der Deutschen Botanischen Gesellschaft. (1986);  99 367-381
  • 25 Grosse W., Schulte A., Fujita H.. Pressurized gas transport in two Japanese alder species in relation to their natural habitats.  Ecological Research. (1993);  8 151-158
  • 27 Harrington C. A.. Responses of red alder and black cottonwood seedlings to flooding.  Physiologia Plantarum. (1987);  69 35-48
  • 28 Hebbar K. B., Prakash A. H., Rao M. R. K.. Lenticels - a morphological adaptation of cotton plant to waterlogging.  Journal of Plant Biology. (2001);  28 119-121
  • 29 Hook D. D., Brown C. L., Kormanik P. P.. Lenticels and water root development of swamp tubelo under various flooding conditions.  Botanical Gazette. (1970);  131 217-224
  • 30 Hook D. D., Brown C. L., Kormanik P. P.. Induced flood tolerance in swamp tupelo (Nyssa sylvatica var. biflora [Walt.] Sarg.).  Journal of Experimental Botany. (1971);  22 78-89
  • 31 Jackson M. B., Armstrong W.. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.  Plant Biology. (1999);  1 274-287
  • 32 Jensen C. R., Luxmoore R. J., van Gundy S. D., Stolzy L. H.. Root air space measurement by a pycnometer method.  Agronomy Journal. (1969);  61 474-475
  • 33 Justin S. H. F. W., Armstrong W.. The anatomical characteristics of roots and plant response to soil flooding.  New Phytologist. (1987);  106 465-495
  • 35 Kozlowski T. T.. Responses of woody plants to flooding. Kozlowski, T. T., ed. Flooding and Plant Growth. Orlando; Academic Press (1984): 129-164
  • 62 Kuchenbuch R., Jungk A.. A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil.  Plant and Soil. (1982);  68 391-394
  • 36 Laan P., Smolders A., Blom C. W. P. M., Armstrong W.. The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in flood tolerance of Rumex species.  Acta Botanica Neerlandica. (1989);  38 131-145
  • 38 Lambers H.. Respiration and NADH-oxidation of roots of flood-tolerant and flood-intolerant Senecio species as affected by anaerobiosis.  Physiologia Plantarum. (1976);  37 117-122
  • 40 Larcher W.. Ökophysiologie der Pflanzen, 5th ed. Stuttgart, Germany; Ulmer Verlag (1994): 394
  • 41 Liepe K.. Wachstum und Wurzelentwicklung von 30-jährigen Schwarzerlen (Alnus glutinosa [L.] Gaertn.) eines Herkunftsversuches.  Allgemeine Forst- und Jagdzeitung. (1990);  161 149-154
  • 42 Mc Vean D. N.. Ecology of Alnus glutinosa (L.) Gaertn. IV. Root system.  Journal of Ecology. (1956);  44 219-225
  • 43 Möller-Lindenhoff Y.. Strukturmerkmale des Wurzelholzes von Birke (Betula pendula Roth.), Erle (Alnus glutinosa [L.] Gaertner), Esche (Fraxinus exselsior L.) und Ulme (Ulmus glabra Huds.) - Veränderungen zum Stammholz sowie die Bedeutung für Funktion und Identifizierung von Wurzeln. PhD Thesis, University of Hamburg, Germany. (1991): 242
  • 44 Norby R. J., Kozlowski T. T.. Flooding and SO2 stress interaction in Betula papyrifera and B. nigra seedlings.  Forest Science. (1983);  29 739-750
  • 45 Perata P., Loreti E., Guglielminetti L., Alpi A.. Carbohydrate metabolism and anoxia tolerance in cereal grains.  Acta Botanica Neerlandica. (1998);  47 269-283
  • 46 Philipson J. J., Coutts M. P.. Tolerance of tree roots to waterlogging. IV. Oxygen transport in woody roots of sitka spruce and lodgepole pine.  New Phytologist. (1980);  85 489-494
  • 47 Revsbech N. P.. Diffusion characteristics of microbial communities determined by use of oxygen sensors.  Journal of Microbial Methods. (1989);  9 111-122
  • 48 Rusch H., Rennenberg H.. Black alder (Alnus glutinosa [L.] Gaertn.) trees mediate methane and nitrous oxide emission from the soil into the atmosphere.  Plant and Soil. (1998);  201 1-7
  • 49 Sand-Jensen K., Prahl C., Stokholm H.. Oxygen release from roots of submerged aquatic macrophytes.  Oikos. (1982);  38 349-354
  • 50 Schulze-Dewitz G., Seehann G.. Holzanatomische Befunde an Erd- und Wasserwurzeln der Roterle (Alnus glutinosa [L.] Gaertner).  Holz-Zentralblatt. (1992);  101 1525-1529
  • 51 Sorrell B. K.. Airspace structure and mathematical modelling of oxygen diffusion, aeration and anoxia in Elocharis sphacelata R. Br. roots.  Australian Journal of Marine and Freshwater Research. (1994);  45 1529-1541
  • 52 Sorrell B. K., Armstrong W.. On the difficulties of measuring oxygen release by root systems of wetland plants.  Journal of Ecology. (1994);  81 35-46
  • 53 Topa M. A., Mc Leod K. W.. Aerenchyma and lenticel formation in pine seedlings: a possible avoidance mechanism to anaerobic growth conditions.  Physiologia Plantarum. (1986);  68 540-550
  • 54 Vartapetian B. B., Jackson M. B.. Plant adaptations to anaerobic stress.  Annals of Botany. (1997);  79 3-20
  • 56 Waldhoff D., Junk W., Furch B.. Responses of three Central Amazonian tree species to drought and flooding under controlled conditions.  International Journal of Ecology and Environmental Science. (1998);  24 237-252
  • 57 Wample R. L., Reid D. M.. Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (Helianthus annus L.).  Planta. (1975);  127 263-270
  • 58 Werner A.. Biomassenverteilung in einem Erlenbaum - Erfassung anhand der Jahrringanalyse. Diploma Thesis, Botanical Institute, Kiel University, Germany. (1994)
  • 59 Wötzel J.. Anpassung der Schwarzerle (Alnus glutinosa) an ein Wachstum unter anaeroben Bodenbedingungen. Ausmaß und Wirkungen der O2-Abgabe in die Rhizosphäre. Stuttgart, Germany; Verlag Ulrich E. Grauer (1997)

1 Much to our regret, Prof. B. Sattelmacher deceased in November 2005.

K. Dittert

Institute of Plant Nutrition and Soil Science
University of Kiel

Olshausenstraße 40

24118 Kiel

Germany

Email: kdittert@plantnutrition.uni-kiel.de

Editor: M. Riederer