References
1
Luch A.
Chem. Unserer Zeit
2001,
35:
294
2
Lowe SW.
Lin AW.
Carcinogenesis
2000,
21:
485
3
Lakshman MK.
Ngassa FN.
Bae S.
Buchanan DG.
Hahn H.-G.
Mah H.
J. Org. Chem.
2003,
68:
6020
4
Rama Krishna NVS.
Fao G.
Padmavathi NS.
Cavalieri EL.
Rogan EG.
Cerny RL.
Gross ML.
Chem. Res. Toxicol.
1992,
5:
293
5a
Rogan EG.
Cavalieri EL.
Tibbels SR.
Cremonesi P.
Warner CD.
Nagel DL.
Tomer KB.
Cerny RL.
Gross ML.
J. Am. Chem. Soc.
1988,
110:
4023
5b
Cremonesi P.
Cavalieri EL.
Rogan EG.
J. Org. Chem.
1989,
54:
3561
6a
Chen L.
Devanesan PD.
Higginbotham S.
Ariese F.
Jankowiak R.
Small GJ.
Rogan EG.
Cavalieri EL.
Chem. Res. Toxicol.
1996,
9:
987
6b
Devanesan PD.
Higginbotham S.
Ariese F.
Jankowiak R.
Suh M.
Small GJ.
Cavalieri EL.
Rogan EG.
Chem. Res. Toxicol.
1996,
9:
1113
7
Lhomme J.
Constant J.-F.
Demeunynck M.
Biopolymers
1999,
52:
65
8a
Amann N.
Wagenknecht H.-A.
Synlett
2002,
687
8b
Mayer E.
Valis L.
Huber R.
Amann N.
Wagenknecht H.-A.
Synthesis
2003,
2335
See reviews:
9a
Lakshman MK.
J. Organomet. Chem.
2002,
653:
234
9b
Agrofoglio LA.
Gillaizeau I.
Saito Y.
Chem. Rev.
2003,
103:
1875
9c
Hocek M.
Eur. J. Org. Chem.
2003,
245
10a
Lakshman MK.
Hilmer JH.
Martin JQ.
Keeler JC.
Dinh YQV.
Ngassa FN.
Russon LM.
J. Am. Chem. Soc.
2001,
123:
7779
10b
Lakshman MK.
Gunda P.
Org. Lett.
2003,
5:
39
11
Western EC.
Daft JR.
Johnson EM.
Gannett PM.
Shaugnessy KH.
J. Org. Chem.
2003,
68:
6767
12
Havelková M.
Dvorák D.
Hocek M.
Synthesis
2001,
1704
13
Schoffers E.
Olsen PD.
Means JC.
Org. Lett.
2001,
3:
4221
The crude product was purified by column chromatography on silica gel(hexane) and recrystallized from acetone yielding a yellow solid (86%). R
f
= 0.23 (hexane). All spectroscopic data of 3 were in agreement with the published data:
14a
Dewhurst F.
Kitchen DA.
J. Chem. Soc., Perkin Trans. 1
1972,
710
14b
Cho BP.
Harvey RG.
J. Org. Chem.
1987,
52:
5668
15a
Muramata M.
J. Org. Chem.
2000,
65:
164
15b
Krämer CS.
Zimmermann TJ.
Sailer M.
Müller TJJ.
Synthesis
2002,
1163
16 The crude product was purified by column chromatography on silica gel (hexane-toluene = 1:1) yielding a yellow solid (25%). R
f
= 0.23 (hexane-toluene = 1:1). 1H NMR (500 MHz, CDCl3): δ = 9.08 (m, 2 H), 8.67 (m, 1 H), 8.44 (d, J = 9.0 Hz, 1 H), 8.35 (d, J = 9.0 Hz, 1 H), 8.24 (d, J = 7.5 Hz, 1 H), 8.10 (d, J = 7.5 Hz, 1 H), 7.97 (m, 2 H), 7.81 (m, 2 H), 1.66 (s, 12 H). 13C NMR (125 MHz, CDCl3): δ = 135.17, 134.82, 131.72, 131.58, 129.48, 129.14, 128.80, 128.65, 128.49, 128.16, 126.55, 126.36, 126.11, 126.0, 125.76, 125.42, 123.62, 123.57, 122.59, 85.03, 25.68. HRMS (EI): m/z calcd for C26H23O2B: 378.17911; found: 378.17896.
17 All spectroscopic data of 6 were in agreement with the published data: Gannett P.
Sura TP.
Synth. Commun.
1993,
23:
1611
18 The crude product was purified by column chromatography on silica gel (CH2Cl2-acetone = 4:1, then EtOAc-MeOH = 10:1, then EtOAc-MeOH-H2O = 10:1:0.5) yielding a yellow solid (25%). Analytical HPLC (RP-18 column, gradient A:B = 10:90 to 90:10 over 45 min, A = MeCN, B = H2O) was performed to ensure the purity of 1 of >99.5%. R
f
= 0.40 (EtOAc-MeOH-H2O = 10:1:0.5). NMR signals were assigned based on 2D NMR measurements (HSQC). 1H NMR (500 MHz, DMSO-d
6): δ = 10.90 (br s, 1 H, NH), 9.34 (m, 2 H, H-10, H-11), 8.57 (d, J = 9.2 Hz, 1 H, H-12), 8.45 (d, J = 7.9 Hz, 1 H, H-1), 8.27 (d, J = 7.4 Hz, 1 H, H-3), 8.08 (m, 2 H, H-2, H-4), 7.91 (m, 1 H, H-9), 7.83 (m, 1.5 H, H-8, H-7), 7.61 (d, J = 8.3 Hz, 0.5 H, H-7), 7.55 (d, J = 9.5 Hz, 0.5 H, H-5), 7.40 (d, J = 9.5 Hz, 0.5 H, H-5), 6.53 (br s, 2 H, NH2), 5.47 (m, 1 H, H-1′), 4.36 (m, 1 H, H-3′), 3.76 (m, 1 H, H-4′), 3.58 (m, 1 H, H-5′), 3.46 (m, 1 H, H-5′), 2.81 (m, 1 H, H-2′), 1.70 (m, 1 H, H-2′). 13C NMR (125 MHz, DMSO-d
6): δ = 157.49, 156.30, 154.27, 132.58 (C-7), 130.02 (C-12), 130.33 and 127.83 (C-4 and C-2), 128.05, 127.75 (C-1), 127.08 (C-3), 127.66 (C-9), 126.05, 125.93 (C-5), 123.43 and 124.94 (C-10 and C-11), 121.35, 88.80 (C-4′), 85.97 (C-1′), 71.93 (C-3′), 62.94 (C-5′), 37.39 (C-2′). HRMS (ESI/FTICR): m/z calcd for C30H23N5O4 [M+ + H]: 518.18228; found: 518.18207.
19 Steady-state fluorescence spectroscopy was performed at r.t. on a Spex Fluoromax III spectrometer. The emission spectra are corrected according to detection system variation with wavelength. UV/Vis absorbance spectroscopy was performed at r.t. on a Varian Cary 100 photometer. Dry solvents (Fluka puriss. over molecular sieve, H2O <0.01%) were used for the measurements.
20a
Fiebig T.
Wagenknecht H.-A.
In Charge Transfer: From Mechanism to Applications
Wiley-VCH;
Weinheim:
2005.
p.195-223
20b
Trifonov A.
Buchvarov I.
Wagenknecht H.-A.
Fiebig T.
Chem. Phys. Lett.
2005,
409:
277
21a See review: Grabowksi ZR.
Rotkiewicz K.
Rettig W.
Chem. Rev.
2003,
103:
3899
21b For an example, see: Fiebig T.
Stock K.
Lochbrunner S.
Riedle E.
Chem. Phys. Lett.
2001,
345:
81
22a
O’Connor D.
Shafirovich VY.
Geacintov NE.
J. Phys. Chem.
1994,
98:
9831
22b
Shafirovich VY.
Courtney SH.
Ya N.
Geacintov NE.
J. Am. Chem. Soc.
1995,
117:
4920
23
Kubota T.
Kano J.
Uno B.
Konse T.
Bull. Chem. Soc. Jpn.
1987,
60:
3865
24
Steenken S.
Jovanovic SV.
J. Am. Chem. Soc.
1997,
119:
617