Plant Biol (Stuttg) 2005; 7(3): 228-237
DOI: 10.1055/s-2005-837692
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Large-Scale Analysis of 73 329 Physcomitrella Plants Transformed with Different Gene Disruption Libraries: Production Parameters and Mutant Phenotypes

G. Schween1 , T. Egener1 , D. Fritzowsky1 , J. Granado1 , M.-C. Guitton1 , N. Hartmann1 , A. Hohe1 , 2 , H. Holtorf1 , 3 , D. Lang1 , J. M. Lucht1 , 4 , C. Reinhard1 , S. A. Rensing1 , K. Schlink1 , 5 , J. Schulte1 , R. Reski1
  • 1Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
  • 2Present address: Institute for Vegetable and Ornamental Crops, Kühnhäuser Straße 101, 99189 Kühnhausen, Germany
  • 3Present address: Albert-Schweitzer-Schule, An der Schelmengass 3, 78048 VS-Villingen, Germany
  • 4Present address: InterNutrition, P.O. Box, 8035 Zürich, Switzerland
  • 5Present address: Section of Forest Genetics, Departement of Plant Sciences, Center of Life Sciences Weihenstephan, TU Munich, Am Hochanger 13, 85354 Freising, Germany
Weitere Informationen

Publikationsverlauf

Received: December 30, 2004

Accepted: March 11, 2005

Publikationsdatum:
12. Mai 2005 (online)

Abstract

Gene targeting in the moss Physcomitrella patens has created a new platform for plant functional genomics. We produced a mutant collection of 73 329 Physcomitrella plants and evaluated the phenotype of each transformant in comparison to wild type Physcomitrella. Production parameters and morphological changes in 16 categories, such as plant structure, colour, coverage with gametophores, cell shape, etc., were listed and all data were compiled in a database (mossDB). Our mutant collection consists of at least 1804 auxotrophic mutants which showed growth defects on minimal Knop medium but were rescued on supplemented medium. 8129 haploid and 11 068 polyploid transformants had morphological alterations. 9 % of the haploid transformants had deviations in the leaf shape, 7 % developed less gametophores or had a different leaf cell shape. Other morphological deviations in plant structure, colour, and uniformity of leaves on a moss colony were less frequently observed. Preculture conditions of the plant material and the cDNA library (representing genes from either protonema, gametophore or sporophyte tissue) used to transform Physcomitrella had an effect on the number of transformants per transformation. We found correlations between ploidy level and plant morphology and growth rate on Knop medium. In haploid transformants correlations between the percentage of plants with specific phenotypes and the cDNA library used for transformation were detected. The number of different cDNAs present during transformation had no effect on the number of transformants per transformation, but it had an effect on the overall percentage of plants with phenotypic deviations. We conclude that by linking incoming molecular, proteome, and metabolome data of the transformants in the future, the database mossDB will be a valuable biological resource for systems biology.

References

  • 1 Aggarwal K., Lee K. H.. Functional genomics and proteomics as a foundation for systems biology.  Briefings in Functional Genomics and Proteomics. (2003);  2 175-184
  • 2 Ashton N. W., Champagne C. E. M., Weiler T., Verkoczy L. K.. The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements.  New Phytologist. (2000);  146 391-402
  • 3 Ashton N. W., Cove D. J.. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. .  Molecular and General Genetics. (1977);  154 87-95
  • 4 Cove D. J., Ashton N. W.. Auxotrophic mutants of the moss, Physcomitrella patens. .  Heredity. (1974);  33 135
  • 5 Decker E. L., Reski R.. The moss bioreactor.  Current Opinion in Plant Biology. (2004);  7 166-170
  • 6 Deroles S., Smith M. A. L., Lee C.. Factors affecting transformation of cell cultures from three dicotyledonous pigment-producing species using microprojectile bombardment.  Plant Cell Tissue and Organ Culture. (2002);  70 69-76
  • 7 Egener T., Granado J., Guitton M.-C., Hohe A., Holtorf H., Lucht J. M., Rensing S., Schlink K., Schulte J., Schween G., Zimmermann S., Duwenig E., Rak B., Reski R.. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.  BMC Plant Biology. (2002);  2 6
  • 8 Engel P. P.. The induction of biochemical and morphological mutants in the moss Physcomitrella patens. .  American Journal of Botany. (1968);  55 438-446
  • 9 Girke T., Schmidt H., Zähringer U., Reski R., Heinz E.. Identification of a novel delta-6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. .  Plant Journal. (1998);  15 39-48
  • 10 Grimsley N. H., Ashton N. W., Cove D. J.. Complementation analysis of auxotrophic mutants of the moss, Physcomitrella patens, using protoplast fusion.  Molecular and General Genetics. (1977);  155 103-107
  • 11 Hiwatashi Y., Nishiyama T., Fujita T., Hasebe M.. Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens. .  Plant Journal. (2001);  28 105-116
  • 12 Hohe A., Decker E. L., Gorr G., Schween G., Reski R.. Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures.  Plant Cell Reports. (2002);  20 1135-1140
  • 13 Hohe A., Egener T., Lucht J. M., Holtorf H., Reinhard C., Schween G., Reski R.. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene knockouts in a moss, Physcomitrella patens. .  Current Genetics. (2004);  44 339-347
  • 14 Hohe A., Reski R.. Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts.  Plant Science. (2002);  163 69-74
  • 15 Hohe A., Reski R.. A tool for understanding homologous recombination in plants.  Plant Cell Reports. (2003);  21 1135-1142
  • 16 Holtorf H., Guitton M.-C., Reski R.. Plant functional genomics.  Naturwissenschaften. (2002);  89 235-249
  • 17 Imaizumi T., Kadota A., Hasebe M., Wada M.. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. .  Plant Cell. (2002);  14 373-386
  • 18 Jaiswal P., Ware D., Ni J. J., Chang K., Zhao W., Schmidt S., Pan X. K., Clark K., Teytelman L., Cartinhour S., Stein L., McCouch S.. Gramene: development and integration of trait and gene ontologies for rice.  Comparative and Functional Genomics. (2002);  3 132-136
  • 19 Katagiri F.. Attacking complex problems with the power of systems biology.  Plant Physiology. (2003);  132 417-419
  • 20 Kempin S. A., Liljegren S. J., Block L. M., Rounsly S. D., Yanofsky M. F.. Targeted disruption in Arabidopsis. .  Nature. (1997);  389 802-803
  • 21 May B. P., Liu H., Vollbrecht E., Senior L., Rabinowicz P. D., Roh D., Pan X. K., Stein L., Freeling M., Alexander D., Martienssen R.. Maize-targeted mutagenesis: A knock-out resource for maize.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 11541-11546
  • 22 Nishiyama T., Hiwatahi Y., Sakakibara K., Kato M., Hasebe M.. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.  DNA Research. (2000);  7 9-17
  • 23 Penmetsa R. V., Ha S. B.. Factors influencing transient gene-expression in electroporated tall fescue protoplasts.  Plant Science. (1994);  100 171-178
  • 24 Provart N. J., McCourt P.. Systems approaches to understanding cell signaling and gene regulation.  Current Opinion in Plant Biology. (2004);  7 605-609
  • 25 Puchta H., Swoboda P., Gal S., Blot M., Hohn B.. Somatic intrachromosomal homologous recombination events in populations of plant siblings.  Plant Molecular Biology. (1995);  28 281-292
  • 26 Rensing S. A., Rombauts S., Van de Peer Y., Reski R.. Moss transcriptome and beyond.  Trends in Plant Science. (2002);  7 535-538
  • 27 Reski R.. Development, genetics and molecular biology of mosses.  Botanica Acta. (1998);  111 1-15
  • 28 Reutter K., Atzorn R., Hadeler B., Schmülling T., Reski R.. Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. .  Planta. (1998);  206 196-203
  • 29 Sarnighausen E., Wurtz V., Heintz D., van Dorsselaer A., Reski R.. Mapping of the Physcomitrella patens proteome.  Phytochemistry. (2004);  65 1589-1607
  • 30 Schaefer D. G.. Gene targeting in Physcomitrella patens. .  Current Opinion in Plant Biology. (2001);  4 143-150
  • 31 Schaefer D. G., Zrӱd J.-P.. Efficient gene targeting in the moss, Physcomitrella patens. .  Plant Journal. (1997);  11 1195-1206
  • 32 Schaefer D. G., Zrӱd J.-P., Knight C. D., Cove D. J.. Stable transformation of the moss Physcomitrella patens. .  Molecular and General Genetics. (1991);  226 418-424
  • 33 Schween G., Fleig S., Reski R.. High-throughput-PCR screen of 15 000 transgenic Physcomitrella plants.  Plant Molecular Biology Reporter. (2002);  20 43-47
  • 34 Schween G., Gorr G., Hohe A., Reski R.. Unique tissue-specific cell cycle in Physcomitrella. .  Plant Biology. (2003 a);  5 50-58
  • 35 Schween G., Hohe A., Koprivova A., Reski R.. Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. .  Journal of Plant Physiology. (2003 b);  160 209-212
  • 36 Schween G., Schulte J., Hohe A., Reski R.. Effect of ploidy level on growth, differentiation and morphology in Physcomitrella patens. .  The Bryologist. (2005);  108 27-35
  • 37 Strepp R., Scholz S., Kruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 4368-4373
  • 38 Terada R., Urawa H., Inagaki Y., Tsugane K., Iida S.. Efficient gene targeting by homologous recombination in rice.  Nature Biotechnology. (2002);  20 1030-1034
  • 39 Tzafrir I., Dickermann A., Brazhnik O., Nguyen Q., McElver J., Frye C., Patton D., Meinke D.. The Arabidopsis SeedGenes Project.  Nucleic Acid Research. (2003);  31 90-93

R. Reski

Plant Biotechnology
Faculty of Biology
University of Freiburg

Schänzlestraße 1

79104 Freiburg

Germany

eMail: ralf.reski@biologie.uni-freiburg.de

Editor: H. Rennenberg

    >