Plant Biol (Stuttg) 2004; 6(6): 654-663
DOI: 10.1055/s-2004-830383
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Gene Expression during Formation of Earlywood and Latewood in Loblolly Pine: Expression Profiles of 350 Genes

U. Egertsdotter1 , 5 , L. M. van Zyl2 , J. MacKay3 , G. Peter4 , M. Kirst2 , C. Clark2 , R. Whetten2 , R. Sederoff2
  • 1Georgia Institute of Technology, Institute of Paper Science and Technology, 500 10th Street, Atlanta, GA 30332, USA
  • 2Forest Biotechnology, North Carolina State University, 2500 Partners II, 840 Main Campus Drive, Centennial Campus, Raleigh, NC 27606, USA
  • 3Centre de Recherche en Biologie Forestière, Pavillon C. E. Marchand, Université Laval, Quebec G1K 7P4, Canada
  • 4School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611-0411, USA
  • 5Present address: Virginia Tech Department of Forestry, 230-A Cheatham Hall (0324), Blacksburg, VA 24061, USA
Further Information

Publication History

Received: May 6, 2004

Accepted: September 14, 2004

Publication Date:
29 November 2004 (online)

Abstract

The natural variability of wood formation in trees affords opportunities to correlate transcript profiles with the resulting wood properties. We have used cDNA microarrays to study transcript abundance in developing secondary xylem of loblolly pine (Pinus taeda) over a growing season. The cDNAs were selected from a collection of 75 000 ESTs that have been sequenced and annotated (http://web.ahc.umn.edu/biodata/nsfpine/). Cell wall thickness and climatic data were related to earlywood and latewood formation at different time points during the growing season. Seventy-one ESTs showed preferential expression in earlywood or latewood, including 23 genes with no significant similarity to genes in GenBank. Seven genes involved in lignin synthesis were preferentially expressed in latewood. The studies have provided initial insights into the variation of expression patterns of some of the genes related to the wood formation process.

References

  • 1 Allona I., Quinn M., Shoop E., Swope K., St. Cyr S., Carlis J., Riedl J., Retzel E., Campbell M. M., Sederoff R., Whetten R. W.. Analysis of xylem formation in pine by cDNA sequencing.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 9693-9698
  • 2 Antonova G. F., Stasova V. V.. Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems.  Trees. (1997);  11 462-468
  • 3 Borquin V., Nishikubo N., Abe H., Brumer H., Denman S., Eklund M., Christiernin M., Teeri T. T., Sundberg B., Mellerowicz E. J.. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues.  Plant Cell. (2002);  14 3073-3088
  • 4 Chang S., Pureyear J., Cairney J.. A simple and efficient method for isolating RNA from pine trees.  Plant Molecular Biology Reporter. (1993);  11 113-116
  • 5 Darley C. P., Forrester A. M., McQueen-Mason S. J.. The molecular basis of plant cell wall extension.  Plant Molecular Biology. (2001);  47 171-187
  • 6 Eriksson M. E., Moritz T.. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. × P. tremuloides Michx.).  Planta. (2002);  214 920-930
  • 7 Farrar J. J., Evert R. F.. Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. .  Trees. (1997);  11 191-202
  • 17 Fengel D., Wegener G.. Wood-Chemistry, Ultrastructure, Reactions. Berlin, New York; De Gruyter (1989)
  • 8 Fukazawa K.. The distribution of lignin in compression and lateral-wood of Abies sacchalinensis.  Research Bulletins of the College Experiment Forests, Hokkaido University. (1974);  31 87-114
  • 9 Gindl W.. The effect of varying latewood proportion on the radial distribution of lignin content in a pine stem.  Holzforschung. (2001);  55 455-458
  • 10 Gindl W., Grabner M., Wimmer R.. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width.  Trees. (2000);  14 409-414
  • 11 Hauch S., Magel E.. Extractable activities and protein content of sucrosephosphate synthase, sucrose synthase and neutral invertase in the trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation.  Planta. (1998);  207 266-274
  • 12 Hegde P., Qi R., Abernathy K., Gay C., Dharap S., Gaspard R., Hughes J. E., Snesrud E., Lee N., Quackenbush J.. A concise guide to cDNA microarray analysis.  BioTechniques. (2000);  29 548-562
  • 13 Hertzberg M., Aspeborg H., Scrader J., Andersson A., Erlandsson R., Blomkvist K., Bhalerao R., Uhlén M., Teeri T. T., Lundeberg J., Sundberg B., Nilsson P., Sandberg G.. A transcriptional roadmap to wood formation.  Proceedings of the National Academy of Sciences of the USA. (2001);  98 14732-14737
  • 14 Jayawickrama K. J. S., McKeand S. E., Jett J. B., Wheeler E. A.. Date of earlywood-latewood transition in provenaces and families of loblolly pine, and its relation to growth phenology and juvenile wood specific gravity.  Canadian Journal of Forest Research. (1997);  27 1245-1253
  • 15 Jin W., Riley R. M., Wolfinger R. D., White K. P., Passador-Gurgel G., Gibson G.. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. .  Nature Genetics. (2001);  29 389-395
  • 16 Kerr M. K., Churchill G. A.. Experimental design for gene expression microarrays.  Biostatistics. (2001);  2 183-201
  • 18 Mellerowicz E. J., Baucher M., Sundberg B., Boerjan W.. Unravelling cell wall formation in the woody dicot stem.  Plant Molecular Biology. (2001);  47 239-274
  • 21 Oh M.-H., Romanow W. G., Smith R. C., Zamski E., Sassa J., Clouse S. D.. Soybean BRU1 encodes a functional xyloglucan endotransglycosylase that is highly expressed in inner epicotyl tissues during brassinosteroid promoted elongation.  Plant and Cell Physiology. (1998);  39 124-130
  • 19 Pant G. B., Kumar K. R., Borgaonkar H. P., Okada N., Fujiwara T., Yamashita K.. Climatic response of Cedrus deodara tree-ring parameters from two sites in the western Himalaya.  Canadian Journal of Forest Research. (2000);  30 1127-1135
  • 20 Parham R. A., Cote Jr.. Distribution of lignin in normal and compression wood of Pinus taeda L.  Wood Science and Technology. (1971);  5 49-62
  • 22 Plomion C., Le Provost G.. Wood formation in trees.  Plant Physiology. (2001);  127 1513-1523
  • 23 Le Provost G., Paiva J., Pot D., Brach J., Plomion C.. Seasonal variation in transcript accumulation in wood forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine rich protein.  Planta. (2003);  217 820-830
  • 25 Savidge R. A., Förster H.. Seasonal activity of uridine 5′-diphosphoglucose: coniferyl alcohol glucosyltransferase in relation to cambial growth and dormancy in conifers.  Canadian Journal of Botany/Reviews Canadian Botany. (1998);  76 486-493
  • 24 Savidge R. A., Barnett J. R., Napier R.. Cell and Molecular Biology of Wood Formation. Savidge, R. A., Barnett, J. R., and Napier, R., eds. Oxfordshire, UK; BIOS Scientific publisher Ltd. (2000): 351p
  • 26 Sjöström E.. Wood Chemistry: Fundamentals and Applications. San Diego; Academic Press (1993): 293p
  • 27 Sterky F., Regan S., Karlsson J., Hertzberg M., Rodhe A., Holmberg A., Amini B., Bhalerao R., Larsson M., Villarroel R., van Montagu M., Sandberg G., Olsson O., Teeri T. T., Boerjan W., Gustafsson P., Uhlén M., Lundeberg J.. Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 13330-13335
  • 28 Uggla C., Magel E., Moritz T., Sundberg B.. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine.  Plant Physiology. (2001);  125 2029-2039
  • 29 Wang Q., Little C. H. A., Oden P. C.. Effect of laterally applied gibberellin A 4/7 on cambial growth and the effects of indole-3-acetic acid in Pinus sylvestris shoots.  Physiologia Plantarum. (1995);  95 187-194
  • 30 Whetten R., Sun Y.-H., Zhang Y., Sederoff R.. Functional genomics and cell wall biosynthesis in loblolly pine.  Plant Molecular Biology. (2001);  47 275-291
  • 31 Wolfinger R. D., Gibson E., Bennett L., Hamadeh H. P., Bushel C., Afshari C., Paules R. S.. Assessing gene significance from cDNA microarray expression data via mixed models.  Journal of Computational Biology. (2001);  8 625-637
  • 32 Xiong L., Okada N., Fujiwara T., Ohta S., Palmer J. G.. Chronology development and climate response analysis of different New Zealand pink pine (Halocarpus biformis) tree-ring parameters.  Canadian Journal of Forest Research. (1998);  28 566-573
  • 34 Zobel B. J., Jett J. B.. Genetics of Wood Production. New York; Springer-Verlag (1995): 337p

U. Egertsdotter

Virginia Tech Department of Forestry

230-A Cheatham Hall

Blacksburg, VA 24061

USA

Email: ulrika.egertsdotter@ipst.gatech.edu

Editor: M. Koornneef

    >