Plant Biol (Stuttg) 2004; 6(6): 740-745
DOI: 10.1055/s-2004-830352
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

The Impact of Altitude and Simulated Herbivory on the Growth and Carbohydrate Storage of Petasites albus

U. Scheidel1 , H. Bruelheide1
  • 1Institute of Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
Further Information

Publication History

Received: February 9, 2004

Accepted: September 1, 2004

Publication Date:
29 November 2004 (online)

Abstract

We tested the hypothesis that higher respiratory losses caused by higher temperatures in the lowlands, compared to montane sites, prevent growth of the montane hemicryptophyte Petasites albus (Asteraceae). In addition, we tested whether increased levels of herbivory enhanced carbon losses at lower elevations. Rhizomes of Petasites albus were transplanted to a montane and a lowland site. In the subsequent three growing seasons the plants were artificially defoliated to simulate mollusc herbivory. Whereas there were no altitudinal differences in the leaf number per plant, the leaf area was higher at the montane site. At the montane site, the leaf number and leaf area decreased with increasing damage, and the rhizome dry weight in the third year was much higher in the undamaged plants. In contrast, fructan concentrations in the rhizomes that were harvested at the end and at the beginning of the growing seasons were generally higher at the lowland site. No clear defoliation effects were observed on most harvest dates. The results indicate that the lower altitudinal limit of Petasites albus cannot be explained by the negative effects of higher temperatures or more leaf damage by herbivores in the lowlands, either alone or in combination. An explanation will require consideration of other site factors such as competition and possibly interactions with herbivory and carbohydrate storage.

References

  • 1 Arnone J. A., Körner C.. Temperature adaptation and acclimation potential of leaf dark respiration in two species of Ranunculus from warm and cold habitats.  Arctic and Alpine Research. (1997);  29 122-125
  • 2 Bell K. L., Bliss L. C.. Autecology of Kobresia bellardii: why winter snow accumulation limits local distribution.  Ecological Monographs. (1979);  49 377-402
  • 3 Bruelheide H., Lieberum K.. Experimental tests for determining the causes of the altitudinal distribution of Meum athamanticum Jacq. in the Harz Mountains.  Flora. (2001);  196 227-241
  • 4 Bruelheide H., Scheidel U.. Slug herbivory as a limiting factor for the geographical range of Arnica montana. .  Journal of Ecology. (1999);  87 839-848
  • 5 Chatterton N. J., Harrison P. A., Bennett J. H., Asay K. H.. Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures.  Journal of Plant Physiology. (1989);  134 169-179
  • 6 Crawford R. M. M., Palin M. A.. Root respiration and temperature limits to the north-south distribution of four perennial maritime plants.  Flora. (1981);  171 338-354
  • 7 Dahl E.. Relations between macro-meteorological factors and the distribution of vascular plants in Northern Europe.  Universitet Trondheim Vitenskapsmuseet, Rapport Botanisk Serie. (1992);  1992 31-59
  • 8 Dahl E.. The Phytogeography of Northern Europe (British Isles, Fennoscandia and Adjacent Areas). Cambridge; Cambridge University Press (1998)
  • 9 De Roover J., Vandenbranden K., Van Laere A., Van den Emde W.. Drought induces fructan synthesis and 1-SST (sucrose : sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.).  Planta. (2000);  210 808-814
  • 10 Deutscher Wetterdienst .Witterungsreport express. Offenbach; Deutscher Wetterdienst (1999 - 2001)
  • 11 Diemer M.. The incidence of herbivory in high-elevation populations of Ranunculus glacialis: a re-evaluation of stress tolerance in Alpine environments.  Oikos. (1996);  75 486-492
  • 12 Dierschke H., Otte A., Nordmann H.. Die Ufervegetation der Fließgewässer des Westharzes und seines Vorlandes.  Naturschutz und Landschaftspflege in Niedersachsen. (1983);  Beiheft 4 1-83
  • 13 Galen C.. Limits to the distributions of Alpine tundra plants: herbivores and the Alpine skypilot, Polemonium viscosum. .  Oikos. (1990);  59 355-358
  • 14 Graves J. D., Taylor K.. A comparative study of Geum rivale L. and Geum urbanum L. to determine those factors controlling their altitudinal distribution. II. Photosynthesis and respiration.  New Phytologist. (1988);  108 297-304
  • 15 Hägele B. F., Rahier M.. Determinants of seasonal feeding of the generalist snail Arianta arbustorum at six sites dominated by Senecioneae.  Oecologia. (2001);  128 228-236
  • 16 Hegi G.. Illustrierte Flora von Mitteleuropa, Vol. VI/4. Compositae II, 3rd edn. München, Hamburg; Parey (1987)
  • 17 Hendry G.. The ecological significance of fructan in a contemporary flora.  New Phytologist. (1987);  106 (Suppl.) 201-216
  • 18 Jeong B., Housley T. L.. Fructan metabolism in wheat in alternating warm and cold temperatures.  Plant Physiology. (1990);  93 902-906
  • 19 Kelly C. A.. Effects of variable life history and insect herbivores on reproduction in Solidago macrophylla (Asteraceae) on an elevational gradient.  American Midland Naturalist. (1998);  139 243-254
  • 20 Körner C.. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin, Heidelberg, New York; Springer (1999)
  • 21 Larigauderie A., Körner C.. Acclimation of leaf dark respiration to temperature in alpine and lowland plant species.  Annals of Botany. (1995);  76 245-252
  • 22 Lubbers A. E., Lechowicz M. J.. Effects of leaf removal on reproduction vs. belowground storage in Trillium grandiflorum. .  Ecology. (1989);  70 85-96
  • 23 Meier H., Reid  G J. S.. Reserve polysaccharides other than starch in higher plants. Loewus, P. A. and Tanner, W., eds. Encyclopedia of Plant Physiology, Vol. 13 A. Berlin; Springer (1982): 418-471
  • 24 Mooney H. A., Billings W. D.. The annual carbohydrate cycle of Alpine plants as related to growth.  American Journal of Botany. (1960);  47 594-598
  • 25 Mooney H. A., Billings W. D.. Effects of altitude on carbohydrate content of mountain plants.  Ecology. (1965);  46 750-751
  • 26 Morrison K. D., Reekie E. G.. Pattern of defoliation and its effect on photosynthetic capacity in Oenothera biennis. .  Journal of Ecology. (1995);  83 759-767
  • 27 Paige K. N.. Regrowth following ungulate herbivory in Ipomopsis aggregata: Geographic evidence for overcompensation.  Oecologia. (1999);  118 316-323
  • 28 Prins A. H., Verkaar H. J., van den Herik M.. Responses of Cynoglossum officinale L. and Senecio jacobaea L. to various degrees of defoliation.  New Phytologist. (1989);  111 725-731
  • 29 Printz H.. Granens og furuens fysiologi og geografiske utbredelse.  Nytt Magasin for Naturvidenskapene. (1933);  73 167-219
  • 30 Russell R. S.. Physiological and biological studies on an Arctic vegetation. III. Observations on carbon assimilation, carbohydrate storage and stomatal movement in relation to the growth of plants on Jan Mayen Island.  Journal of Ecology. (1940);  28 289-309
  • 31 SAS Institute .SAS Procedures Guide, Version 8. Cary, NC. (2000)
  • 32 Scheidel U., Bruelheide H.. Altitudinal differences in herbivory on montane Compositae species.  Oecologia. (2001);  129 75-86
  • 33 Scheidel U., Röhl S., Bruelheide H.. Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae.  Acta Oecologica. (2003);  24 275-283
  • 34 Skre O.. Photosynthesis and respiration in leaves of mountain birch (Betula pubescens Ehrh.) and related tree species.  Meddelelser fra Skogforsk. (1993);  45 1-23
  • 35 Stewart W. S., Bannister P.. Seasonal changes in carbohydrate content in three Vaccinium species with particular reference to V. uliginosum and its distribution in the British isles.  Flora. (1973);  162 134-155
  • 36 Stewart W. S., Bannister P.. Dark respiration rates in Vaccinium ssp. in relation to altitude.  Flora. (1974);  163 415-421
  • 37 Suzuki S.. Leaf phenology, seasonal changes in leaf quality and herbivory pattern of Sanguisorba tenuifolia at different altitudes.  Oecologia. (1998);  117 169-176
  • 38 Thorsteinsson B., Harrison P. A., Chatterton N. J.. Fructan and total carbohydrate accumulation in leaves of two cultivars of timothy (Phleum pratense Vega and Climax) as affected by temperature.  Journal of Plant Physiology. (2002);  159 999-1003
  • 39 Woodward F. I.. Temperature and the distribution of plant species. Long, S. P. and Woodward, F. I., eds. Plants and Temperature. Cambridge; Society for Experimental Botany (1988): 59-75
  • 40 Woodward F. I., Pigott C. D.. The climatic control of the altitudinal distribution of Sedum rosea L. Scop. and S. telephium L. I. Field observations.  New Phytologist. (1975);  74 323-334
  • 41 Wyka T.. Carbohydrate storage and use in an Alpine population of the perennial herb, Oxytropis sericea. .  Oecologia. (1999);  120 198-208
  • 42 Zachhuber K., Larcher W.. Energy content of different alpine species of Saxifraga and Primula depending on their altitudinal distribution.  Photosynthetica. (1978);  12 436-439

H. Bruelheide

Institute of Geobotany and Botanical Garden
Martin-Luther-University Halle-Wittenberg

Am Kirchtor 1

06108 Halle

Germany

Email: bruelheide@botanik.uni-halle.de

Editor: J. Knops

    >