Subscribe to RSS
DOI: 10.1055/s-2004-822430
© Georg Thieme Verlag Stuttgart · New York
Ursachen der Pharmakoresistenz der Temporallappenepilepsie - Neue Beeinträchtigungen der GABAergen Hemmung
Publication History
Publication Date:
25 March 2004 (online)
Zusammenfassung
Trotz Einführung zahlreicher neuer Antiepileptika hat sich der Anteil pharmakoresistenter Patienten nur wenig geändert. Es scheint daher, als seien die zellulären Mechanismen der Epilepsie des Menschen und die Pharmakoresistenz nur unzureichend verstanden. An Hirnschnitten des humanen epileptogenen Neokortex konnte gezeigt werden, dass die GABAA-Antwort bei einigen Neuronen erregend statt hemmend ist und dass GABAB-Rezeptor vermittelte Effekte vermindert sind, ein Effekt der hochfrequente synaptische Aktivität begünstigt. Diese Veränderungen sind mehr als hinreichend zur Erklärung der schweren pharmakoresistenten Epilepsie. Störungen bzw. Fehlen jedes einzelnen dieser Mechanismen führt in knockout Mäusen zu Epilepsie.
Summary
Despite the considerable increase in available drugs to treat epilepsy, the percentage of patients becoming seizure free has changed very little in the last decade. Thus it seems as if the cellular mechanisms contributing to epileptogenesis and the development of pharmacoresistance in human epilepsy are still poorly understood. Here I briefly review some of our key findings from slices of human epileptogenic cortex: 1. GABAA-responses are in some neurones excitatory rather than inhibitory, probably due to impaired chloride transport and 2. GABAB-receptor mediated events are reduced, allowing for higher frequencies of synaptic activity and. These findings obtained in variable proportions of the neurones are more than sufficient to account for the severity of the pharmacoresistant epilepsy these patients suffered. Each mechanism in isolation cause epilepsy in knockout mice.
Key Words
temporal lobe epilepsy - GABA - KCl transport
Literatur
- 1 Avoli M, Williamson A. Functional and pharmacological properties of human neocortical neurons maintained in vitro. Progr Neurobiol. 1996; 48 519-554
- 2 Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABAA receptor expression in temporal lobe epilepsy. Nature Med. 1998; 4 1166-1172
- 3 Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002; 298 1418-1421
- 4 Deisz RA. Electrophysiology of GABAB receptors. In: The GABA receptors, Enna S & Bowery NG (Hrsg.). Totowa, NJ, Humana Press Inc. 1997; 157-207
- 5 Deisz RA. GABAB receptor-mediated effects in human and rat neocortical neurones in vitro. Neuropharmacol. 1999; 38 1755-1766
- 6 Deisz RA. The GABAB receptor antagonist CGP 55845A reduces presynaptic GABAB actions in neocortical neurones of the rat in vitro. Neuroscience. 1999; 93 1241-1249
- 7 Deisz RA. Cellular mechanisms of pharmacoresistance in slices from epilepsy surgery. In Novartis Foundation Symposia 243, Mechanisms of drug resistance in epilepsy: lessons from oncology. 2002; 186-206
- 8 Deisz RA, Billard JM, Zieglgänsberger W. Presynaptic and postsynaptic GABAB receptors of neocortical neurones of the rat in vitro: differences in pharmacology and ionic mechanisms. Synapse. 1997; 25 62-72
- 9 Deisz RA, Dose M, Lux HD. The time course of GABA action on the crayfish stretch receptor: evidence for a saturable GABA uptake. Neuroscience Lett. 1984; 47 245-250
- 10 Deisz RA, Lehmann TN, Lanksch WR, Meencke HJ, Nitsch R. Receptor mechanisms involved in hyperexcitability of cortical tissue from epilepsy surgery. J Physiol. 1998; 513 35-36
- 11 Deisz RA, Lux HD. Diphenylhydantoin prolongs post-synaptic inhibition and iontophoretic GABA action in the crayfish stretch receptor. Neuroscience Lett. 1977; 5 199-203
- 12 Deisz RA, Lux HD. The role of intracellular chloride in post-synaptic inhibition of crayfish stretch receptor neurones. J Physiol. 1982; 326 123-128
- 13 Deisz RA, Prince DA. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feedback on GABA release. J Physiol. 1989; 412 513-541
- 14 Deisz RA, Spilker L, Lehmann TN, Lanksch WR, Meencke HJ. Tiagabine augments only GABAA receptor-mediated responses of human cortical neurones in slices from epilepsy surgery tissue. J Physiol. 2001; 533 52-53
- 15 Deisz RA, Spilker L, Strauss U, Lehmann TN, Bohr KC. Zelluläre Mechanismen der Übererregbarkeit in Hirnschnitten von epilepsiechirurgischen Resektaten. Z Epileptol. 2003; 16 214-222
- 16 Granger P, Biton B, Faure C. et al. . Modulation of the g-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol. 1995; 47 1189-1196
- 17 Gutnick MJ, Connors BW, Prince DA. Mechanism of neocortical epileptogenesis in vitro. J Neurophysiol. 1982; 48 1321-1335
- 18 Isaacson JS, Solis JM, Nicoll RA. Local and diffuse synaptic action of GABA in the hippocampus. Neuron. 1993; 10 165-175
- 19 Kaila K, Voipio J, Paalasmaa P, Pasternack M, Deisz RA. The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol. 1993; 464 273-289
- 20 Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B. GABAB receptor subtypes assemble into functional heterodimeric complexes. Nature. 1998; 396 683-687
- 21 Kole MHP, Strauss U, Lehmann TN, Lanksch WR, Meencke HJ, Deisz RA. Hyperpolarization-activated inward currents of human neocortical neurons. Soc Neuroscience. 1999; 25 844
- 22 Lancel M, Faulhaber J, Deisz RA. The GABA uptake inhibitor tiagabine induces a non-REM sleep specific enhancement of delta activity in the rat. Brit J Pharmacol. 1998; 123 1471-1477
- 23 Misgeld U, Deisz RA, Dodt HU, Lux HD. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science. 1986; 232 1413-1415
- 24 Möhler H, Benke D, Benson J, Lüscher B, Rudolph U, Fritschy JM. Diversity in structure, pharmacology and regulation of GABAA receptors. In: Enna SJ & Bowery N (Hrsg.). The GABA receptors, Totowa, NJ Humana Press Inc. 1997; 11-63
- 25 Otis TS, Mody I. Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. J Neurophysio. 1992; 67 227-235
- 26 Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of a putative K-Cl cotransporter in rat brain. J Biol Chem. 1996; 271 16245-16252
- 27 Somogyi P. Synaptic organization of GABAergic neurons and GABAA receptors in the lateral geniculate nucleus and visual cortex. In: Lam DM & Gilbert CD (Hrsg.). Neural mechanisms of visual perception, Houston, Gulf Publishing. 1990; 35-62
- 28 Spilker LA, Lehmann TN, Meencke HJ, Nitsch R, Deisz RA. Impaired function of GABAB receptors in pharmacoresistant epilepsy tissue from humans (in Vorbereitung).
- 29 Thompson SM, Deisz RA, Prince DA. Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J Neurophysiol. 1988; 60 105-124
Kontaktadresse:
PD Dr. R.A. Deisz
Charité Universitätsmedizin Berlin
Zentrum für Anatomie
Philippstr. 10
10098 Berlin