Plant Biol (Stuttg) 2004; 6(6): 746-754
DOI: 10.1055/s-2004-821269
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Leaf Traits and Herbivory Rates of Tropical Tree Species Differing in Successional Status

L. Poorter1 , 2 , 3 , M. van de Plassche1 , S. Willems1 , R. G. A. Boot1 , 2
  • 1Department of Plant Ecology, Utrecht University, P.O. Box 80084, 3508 TB Utrecht, The Netherlands
  • 2Programa Manejo de Bosques de la Amazonía Boliviana (PROMAB), Casilla 107, Riberalta, Bolivia
  • 3Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
Further Information

Publication History

Received: April 20, 2004

Accepted: July 27, 2004

Publication Date:
20 October 2004 (online)

Abstract

We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C : N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9 - 8.5 % among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession.

References

  • 1 Ackerly D. D.. Canopy structure and dynamics: integration of growth processes in tropical pioneer trees. Mulkey, S. S., Chazdon, R. L., and Smith, A. P., eds. Tropical Forest Plant Physiology. London; AP Chapman and Hall (1996): 619-658
  • 2 Aerts R.. The advantages of being evergreen.  Trends in Ecology and Evolution. (1995);  10 402-407
  • 3 Basset Y.. Local communities of arboral herbivores in Papua New Guinea: predictors of insect variables.  Ecology. (1996);  77 1906-1919
  • 4 Bazzaz F. A., Pickett S. T. A.. Physiological ecology of tropical succession: a comparative review.  Annual Review of Ecology and Systematics. (1980);  10 351-371
  • 5 Coley P. D.. Rates of herbivory on different tropical trees. Leigh, E. G., Rand, A. S. and Windsor, D. M., eds. Ecological of a Tropical Forest: Seasonal Rhythms and Long-Term Changes. Washington; Smithsonian Institution Press (1982): 123-132
  • 6 Coley P. D.. Herbivory and defensive characteristics of tree species in a lowland tropical forest.  Ecological Monographs. (1983);  53 209-233
  • 7 Coley P. D., Barone J. A.. Herbivory and plant defences in tropical forests.  Annual Review of Ecology and Systematics. (1996);  27 305-335
  • 8 Coley P. D., Bryant J. P., Chapin F.S.. Resource availability and plant antiherbivore defence.  Science. (1985);  230 895-899
  • 9 Coomes D. A., Grubb P. J.. Impact of root competition in forests and woodlands: a theoretical framework and review of experiments.  Ecological Monographs. (2000);  70 171-207
  • 10 Dawkins H. C., Field D. R. B.. A long-term surveillance system for British woodland vegetation. Occassional Papers No. 1. Oxford University; Department of Forestry (1978)
  • 11 Denslow J. S.. Functional groups diversity and responses to disturbance. Orians, G., Dirzo, R., and Cushman, H., eds. Biodiversity and Ecosystem Processes in Tropical Forests. Berlin; Springer-Verlag (1996): 127-151
  • 12 Denslow J. S., Ellison A. M., Sanford R. E.. Treefall gap size effects on above- and below-ground processes in a tropical wet forest.  Journal of Ecology. (1998);  86 597-609
  • 13 DeWalt S. J., Denslow J. S., Ickes K.. Natural enemy release facilitates habitat expansion of the invasive shrub Clidemia hirta. .  Ecology. (2004);  85 471-483
  • 14 Ellsworth D. S., Reich P. B.. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession.  Ecology. (1996);  77 581-594
  • 15 Evans J. R.. Photosynthesis and nitrogen relationships in leaves of C3 plants.  Oecologia. (1989);  78 9-19
  • 16 Frizano J., Vann D. R., Johnson J. H., Johnsons C. M., Vieira I. C. G., Zarin D.. Labile phosphorus in soils of forest fallows and primary forest in the Bragantina region, Brazil.  Biotropica. (2003);  35 2-11
  • 17 Grime J. P.. Plant Strategies and Vegetation Processes. Chichester; John Wiley & Sons (1979)
  • 18 Henriksen A.. An automated method for determining low-level concentraions of phosphate in fresh and saline waters.  Analyst (London). (1965);  90 29-34
  • 19 King D. A.. Influence of light level on the growth and morphology of saplings in a Panamanian forest.  American Journal of Botany. (1994);  81 948-957
  • 20 Leps J., Novotny V., Basset Y.. Habitat and successional status of plants in relation to coommunitis of their leaf-chewing herbivores in Papua New Guinea.  Journal of Ecology. (2001);  89 186-199
  • 21 Lusk C. H.. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest.  Oecologia. (2002);  132 188-196
  • 22 Lusk C. H., Del Pozo A.. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates.  Austral Ecology. (2002);  27 173-182
  • 23 Marquis R. J.. Leaf herbivores decrease fitness of a tropical plant.  Science. (1984);  226 537-539
  • 24 Marquis R. J., Braker E. H.. Plant-herbivore interactions: diversity, specificity, and impact. McDade, L. A., Hespenheide, H. A., and Hartshorn, G. S., eds. La Selva: Ecology and Natural History of a Neotropical Rainforest. Chicago; University of Chicago Press (1993): 261-281
  • 25 Mesquita R. C. G., Ickes K., Ganade G., Williamson G. B.. Alternative successional pathways in the Amazon Basin.  Journal of Ecology. (2001);  89 528-537
  • 26 Meziane S., Shipley B.. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability.  Plant, Cell and Environment. (1999);  22 447-459
  • 27 Peña-Claros M.. Changes in forest structure and species composition during secondary succession in the Bolivian Amazon.  Biotropica. (2003);  35 450-461
  • 28 Poorter H., de Jong R.. A comparison of specific leaf area, chemical compositions and leaf construction costs of field plants from 15 habitats differing in productivity.  New Phytologist. (1999);  143 163-176
  • 29 Poorter H., Garnier E.. The ecological significance of variation in relative growth rate and its components. Pugnaire F. and Valladares, F., eds. Handbook of Functional Plant Ecology. New York; Marcel Dekker (1999): 81-120
  • 30 Poorter H., van der Werf A.. Is inherent variation in RGR determined by LAR at low light and by NAR at high light?. Lambers, H., Poorter, H., and van Vuuren, M. M. I., eds. Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Leiden; Backhuys Publishers (1998): 309-336
  • 31 Poorter H., Villar R.. The fate of acquired carbon in plants: chemical composition and construction costs. Bazzaz, F. A. and Grace, J., eds Plant Resource Allocation. New York; Academic Press (1997): 39-72
  • 32 Poorter L.. Growth responses of fifteen rain forest tree species to a light gradient; the relative importance of morphological and physiological traits.  Functional Ecology. (1999);  13 396-410
  • 33 Poorter L.. Light-dependent changes in allocation and their effects on the growth of rain forest tree species.  Functional Ecology. (2001);  15 113-123
  • 34 Poorter L., Arets E. J. M. M.. Light environment and tree strategies in a Bolivian tropical moist forest; a test of the light-partitioning hypothesis.  Plant Ecology. (2003);  166 295-306
  • 35 Poorter L., Boot R. G. A., Hayashida Y., Leigue J., Peña M., Zuidema P.. Estructura y dinámica de un bosque húmedo tropical en el norte de la Amazonía Boliviana. PROMAB Informe Tecnico 2. Riberalta, Bolivia. (2001)
  • 36 Popma J., Bongers F., Werger M. J. A.. Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico.  Oikos. (1992);  63 207-214
  • 37 Raaijmakers D., Boot R. G. A., Dijkstra P., Pot S., Pons T.. Photosynthetic rates in relation to leaf phosphorous content in pioneer versus climax tropical rainforest trees.  Oecologia. (1995);  102 120-125
  • 38 Reich P. B., Ellsworth D. S., Uhl C.. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an ologotrohic Amazonian forest.  Functional Ecology. (1995);  9 65-76
  • 39 Reich P. B., Walters M. B., Ellsworth D. S.. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems.  Ecological Monographs. (1992);  62 365-392
  • 40 Reich P. B., Walters M. B., Ellsworth D. S., Uhl C.. Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities.  Oecologia. (1994);  97 62-72
  • 41 Rijkers T.. Leaf function in tropical rain forest canopy trees. The effect of light on leaf morphology and physiology in different-sized trees. PhD thesis, Wageningen University, Wageningen. (2000)
  • 42 Ryser P.. The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses.  Functional Ecology. (1996);  10 717-723
  • 43 Saldarriaga J. G.. Recuperación de la selva de “Tierra Firme” en el alto río Negro Amazonía Colombiana-Venezolana. Studies in the Colombian Amazon 5. Tropenbos-Colombia, Bogotá. (1994)
  • 44 Saldarriaga J. G., West D. C., Tharp M. L., Uhl C.. Long-term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela.  Journal of Ecology. (1988);  76 938-958
  • 45 Salo J., Kalliola R., Hakkinen I., Makinen Y., Niemala P., Puhakka M., Coley P. D.. River dynamics and the diversity of Amazon lowland rainforest.  Nature. (1986);  322 254-258
  • 46 Schieving F.. Plato's Plant: On the Mathematical Structure of Simple Plants and Canopies. Leiden; Backhuys Publishers (1998)
  • 47 Schnitzer S. A., Dalling J. W., Carson W.. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration.  Journal of Ecology. (2000);  88 655-666
  • 48 Shipley B.. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms.  Functional Ecology. (1995);  9 312-319
  • 49 Thomas S. C., Bazzaz F. A.. Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees.  Ecology. (1999);  80 1607-1622
  • 50 Thompson J., Proctor J., Scott D. A., Fraser P. J., Marrs R. H., Miller R. P., Viana V.. Rain forest on Maracá Island, Roraima Brazil: artifical gaps and plant response to them.  Forest Ecology and Management. (1998);  102 305-321
  • 51 Uhl C., Clark K., Dezzeo N., Maquirino P.. Vegetation dynamics in Amazonian treefall gaps.  Ecology. (1988);  69 751-763
  • 52 Van Dam O.. Forest filled with gaps. Effects of gap size on water and nutrient cycling in tropical rain forest. A study in Guyana. Tropenbos-Guyana Series 10. Tropenbos-Guyana Programme, Georgetown. (2001)
  • 53 Van der Meer P. J.. Formation and closure of gaps in the rain forest at Nouragues, French Guiana.  Vegetatio. (1996);  126 167-179
  • 54 Veneklaas E. J., Poorter L.. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. Lambers, H., Poorter, H., and. van Vuuren, M. M. M., eds. Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences. Leiden; Backhuys Publishers (1998): 337-361
  • 55 Williams K., Field C. B., Mooney H. A.. Relationships among leaf construction cost, leaf longevity, and light environment in rain-forest plants of the genus Piper. .  American Naturalist. (1989);  133 198-211
  • 56 Wright I. J., Cannon K.. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora.  Functional Ecology. (2001);  15 351-359
  • 57 Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J. H. C., Diemer M., Flexas J., Garnier E., Groom P. K., Gulias J., Hikosaka K., Lamont B. B., Lee T., Lee W., Lusk C., Midgley J. J., Navas M. L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V. I., Roumet C., Thomas S. C., Tjoelker M. G., Veneklaas E. J., Villar R.. The worldwide leaf economics spectrum.  Nature. (2004);  428 621-827

L. Poorter

Forest Ecology and Forest Management Group
Wageningen University

P.O. Box 47

6700 AA Wageningen

The Netherlands

Email: lourens.poorter@wur.nl

Editor: J. T. M. Elzenga