Plant Biol (Stuttg) 2004; 6(1): 81-90
DOI: 10.1055/s-2004-815733
Original Paper

Georg Thieme Verlag Stuttgart · New York

Responses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects

J. Renaut 1 , 2 , S. Lutts 2 , L. Hoffmann 1 , J.-F. Hausman 1
  • 1CRP-Gabriel Lippmann, CREBS, Luxembourg, GD Luxembourg
  • 2Université Catholique de Louvain-la-Neuve, Unité de Biologie Végétale, 5 (Bte 13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
Further Information

Publication History

Publication Date:
17 February 2004 (online)

Abstract

The effects of cold acclimation on primary metabolism in actively growing poplar (Populus tremula L. × P. tremuloides Michaux) were studied. Three-month-old poplar plants were exposed to chilling stress (4 °C) and compared to plant material kept at a control temperature (23 °C). This treatment did not affect the survival of the plants but growth was almost stopped. The freezing tolerance of the adult leaves increased from - 5.7 °C for the control plants to - 9.8 °C after 14 days of exposure to 4 °C. During acclimation, the evolution of soluble carbohydrate contents was followed in the leaves. Sucrose, glucose, fructose and trehalose accumulated rapidly under chilling conditions, while raffinose content increased after one week at 4 °C. Proteomic analyses, by bidimensional electrophoresis, performed during this stage revealed that a large number of proteins had higher expression, while much less proteins disappeared or had a lower abundance. MALDI-TOF-MS analyses enabled ca. 30 spots to be proposed for candidate proteins. Among the accumulating or appearing proteins proposed, about a third presented similarities with chaperone-like proteins (heat shock proteins, chaperonins). In addition, dehydrins and other late embryogenesis abundant proteins, i.e., stress-responsive proteins, detoxifying enzymes, proteins involved in stress signalling and transduction pathways were also activated or newly synthesised. Finally, cold exposure induced a decrease in the candidate proteins involved in cell wall or energy production.

References

  • 1 Antikainen M., Griffith M.. Antifreeze protein accumulation in freezing-tolerant cereals.  Physiol. Plant.. (1997);  99 423-432
  • 2 Arora R., Rowland L. J., Panta G. R.. Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions?.  Physiol. Plant.. (1997);  101 8-16
  • 3 Arora R., Wisniewski M. E.. Ultrastructural and protein changes in cell suspension cultures of peach associated with low temperature-induced cold acclimation and abscisic acid treatment.  Plant Cell Tissue Org. Cult.. (1995);  40 17-24
  • 4 Arora R., Wisniewski M. E., Rowland L. J.. Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and evergreen peach.  J. Amer. Soc. Hort. Sci.. (1996);  121 915-919
  • 5 Blum H., Beier H., Gross H. J.. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels.  Electrophoresis. (1987);  8 93-99
  • 6 Borovskii G. B., Stupnikova I. V., Antipina A. I., Vladimirova S. V., Voinikov V. K.. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment.  BMC Plant Biology. (2002);  2 5-11
  • 7 Bouchereau A., Aziz A., Larher F., Martin-Tanguy J.. Polyamines and environmental challenges: recent development.  Plant Sci.. (1999);  140 103-125
  • 8 Bradshaw H. D., Stettler R. F.. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree.  Genetics. (1995);  139 963-973
  • 9 Caffrey M., Fonseca V., Leopold A. C.. Lipid-sugar interactions: relevance of anhydrous biology.  Plant Physiol.. (1988);  86 754-758
  • 10 Castonguay Y., Nadeau P., Lechasseur P., Chouinard L.. Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winterhardiness.  Crop Sci.. (1995);  35 509-516
  • 11 Chen W., Provart N. J., Glazebrook J., Katagari F., Chang H.-R., Eulgem T., Mauch F., Luan S., Zou G., Whitham S. A., Budworth P. R., Tao Y., Xie Z., Lam S., Kreps J. A., Harper J. F., Si-Ammour A., Mauch-Mani B., Heinlein M., Kobayashi K., Hohn T., Dangl J. L., Wang X., Zhu T.. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses.  Plant Cell. (2002);  14 559-574
  • 12 Desikan R., Mackerness S. A. H., Hancock J. T., Neill S. J.. Regulation of the Arabidopsis transcriptome by oxidative stress.  Plant Physiol.. (2001);  127 159-172
  • 13 Fowler S., Thomashow M. F.. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.  Plant Cell. (2002);  14 1675-1690
  • 14 Gharahdaghi F.. Mass spectrometric identification of proteins from silver stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity.  Electrophoresis. (1999);  20 601-605
  • 15 Görg A., Boguth G., Drews O., Obermaier C., Reil G., Wildgruber R., Weiss W.. Two-Dimensional Electrophoresis with Immobilized pH Gradients for Proteome Analysis. München; Technical University of Munich (2001)
  • 16 Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W.. The current state of two-dimensional electrophoresis with immobilized pH gradients.  Electrophoresis. (2000);  21 1037-1053
  • 17 Graham D., Patterson B. D.. Responses of plants to low, nonfreezing temperatures: Proteins, metabolism, and acclimation.  Ann. Rev. Plant Physiol.. (1982);  33 347-372
  • 18 Griffith M., Antikainen M., Hon W.-C., Pihakaski-Maunsbach K., Yu X.-M., Chun J. U., Yang D. S. C.. Antifreeze proteins in winter rye.  Physiol. Plant.. (1997);  100 327-332
  • 19 Guy C.. Cold acclimation and freezing stress tolerance: Role of protein metabolism.  Ann. Rev. Plant Physiol. Plant Mol. Biol.. (1990);  41 187-223
  • 20 Guy C., Haskell D., Neven L., Klein P., Smelser C.. Hydration-state-responsive proteins link cold and drought stress in spinach.  Planta. (1992);  188 265-270
  • 21 Gygi S. P., Rochon Y., Franza B. R., Aebersold R.. Correlation between protein and mRNA abundance in yeast.  Mol. Cell Biol.. (1999);  19 1720-1730
  • 22 Hausman J.-F., Evers D., Thiellement H., Jouve L.. Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments.  Plant Cell Rep.. (2000);  19 954-960
  • 23 Howe G. T., Davis J., Jeknic Z., Chen T. H., Frewen B., Bradshaw H. D., Saruul P.. Physiological and genetic approaches to studying endodormancy-related traits in Populus. .  Hortsc.. (1999);  34 1174-1184
  • 24 Iba K.. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance.  Ann. Rev. Plant Biol.. (2002);  53 225-245
  • 25 Imanishi H. T., Suzuki T., Masuda K., Harada T.. Accumulation of raffinose and stachyose in shoot apices of Lonicera caerulea L. during cold acclimation.  Sci. Hort.. (1998);  72 255-263
  • 26 Kendrick B. S., Chang B. S., Arakawa T., Peterson B., Randolph T. W., Manning M. C., Carpenter J. F.. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state.  Proc. Natl. Acad. Sc.. (1997);  94 11917-11922
  • 27 Krause G. H., Carouge N., Garden H.. Long-term effects of temperature shifts on xanthophyll cycle and photoinhibition in spinach (Spinacia oleracea). .  Austr. J. Plant Physiol.. (1999);  26 125-134
  • 28 Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M.. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying.  Appl. Environ. Microbiol.. (1995);  61 3592-3597
  • 29 Levitt J.. Responses of Plants to Environmental Stresses. New York; Academic Press (1980)
  • 30 Lichtenthaler H. K.. Vegetation stress: An introduction to the stress concept in plants.  J. Plant Physiol.. (1996);  148 4-14
  • 31 Mittler R.. Oxidative stress, antioxidants and stress tolerance.  Trends Plant Sci.. (2002);  7 405-410
  • 32 Murashige T., Skoog F.. A revised medium for rapid growth and bioassays with tobacco tissue culture.  Physiol. Plant.. (1962);  15 473-497
  • 33 Oliver A. E., Crowe L. M., Crowe J. H.. Methods for dehydration-tolerance: Depression of the phase transition temperature in dry membranes and carbohydrate vitrification.  Seed. Sci. Res.. (1998);  8 211-222
  • 34 Paul M. J., Pellny T. K.. Carbon metabolite feedback regulation of leaf photosynthesis and development.  J. Exp. Bot.. (2003);  54 539-547
  • 35 Pearce R. S.. Molecular analysis of acclimation to cold.  Plant Growth Regul.. (1999);  29 47-76
  • 36 Pelah D., Wang W. X., Altman A., Shoseyov O., Bartels D.. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response.  Physiol. Plant.. (1997);  99 153-159
  • 37 Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R.. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.  Plant Cell. (1994);  6 65-74
  • 38 Rinne P. L., Kaikuranta P. L., van der Plas L. H., van der Schoot C.. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration.  Planta. (1999);  209 377-388
  • 39 Rouhier N., Gelhaye E., Sautiere P.-E., Brun A., Laurent P., Tagu D., Gerard J., de Faӱ E., Meyer Y., Jacquot J.-P.. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as proton donor.  Plant Physiol.. (2001);  127 1299-1309
  • 40 Salekdeh G. H., Siopongco J., Wade L. J., Ghareyazie B., Bennett J.. Proteomic analysis of rice leaves during drought stress and recovery.  Proteomics. (2002);  2 1131-1145
  • 41 Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., Hayashizaki Y., Shinozaki K.. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray.  Plant Cell. (2001);  13 61-72
  • 45 Sung D. Y., Kaplan F., Lee K.-J., Guy C. L.. Acquired tolerance to temperature extremes.  Trends Plant Sci.. (2003);  8 179-187
  • 42 Wang W., Pelah D., Alegrand T., Shoseyov O., Altman A.. Characterization of SP1, a stress-responsive, boiling soluble, homo-oligomeric protein from aspen.  Plant Physiol.. (2002);  130 865-875
  • 43 Wilson R., Cataldo A., Andersen C. P.. Determination of total nonstructural carbohydrates in tree species by high-performance anion-exchange chromatography with pulsed amperometric detection.  Can. J. For. Res.. (1995);  25 2022-2028
  • 44 Wisniewski M. E., Close T. J., Artlip T. S., Arora R.. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants.  Physiol. Plant.. (1996);  96 496-505

J.-F. Hausman

CRP-Gabriel Lippmann

CREBS, 162 a Av. de la Faïencerie

1511 Luxembourg

GD Luxembourg

Email: hausman@crpgl.lu

Section Editor: H. Rennenberg

    >