Plant Biol (Stuttg) 2003; 5(5): 451-454
DOI: 10.1055/s-2003-44789
Rapid Communication

Georg Thieme Verlag Stuttgart · New York

Dandelion Seed Dispersal: The Horizontal Wind Speed Does Not Matter for Long-Distance Dispersal - it is Updraft!

O. Tackenberg 1 , P. Poschlod 1 , S. Kahmen 1
  • 1Institut für Botanik, Universität Regensburg, Regensburg, Germany
Further Information

Publication History

Publication Date:
27 November 2003 (online)

Abstract

Long-distance dispersal of seeds (LDD) surely affects most ecological and evolutionary processes related to plant species. Hence, numerous attempts to quantify LDD have been made and, especially for wind dispersal, several simulation models have been developed. However, the mechanisms promoting LDD by wind still remain ambiguous and the effects of different weather conditions on LDD, although recognized as important, have only rarely been investigated. Here we examine the influence of wind speed and updrafts on dispersal of dandelion (Taraxacum officinale agg.), a typical wind-dispersed herb of open habitats. We used PAPPUS, a weather-sensitive mechanistic simulation model of wind dispersal, which considers frequency distribution of weather conditions during the period the simulation refers to. A simulation for the 4-month shedding period of dandelion shows that high wind speed does not promote LDD. In contrast, vertical turbulence, especially convective updrafts, are of overwhelming importance. Mainly caused by updrafts, in the simulations more than 0.05 % of dandelion seeds were dispersed beyond 100 m, a distance commonly used to define LDD. We conclude that long-distance dispersal of seeds of herbaceous species with falling velocities < 0.5 - 1.0 ms-1 is mainly caused by convective updrafts.

References

  • 1 Andersen M.. Mechanistic models for the seed shadows of wind-dispersed plants.  American Naturalist. (1991);  137 476-497
  • 2 Augspurger C. K., Franson S. E.. Wind dispersal of artifical fruits varying in mass, area, and morphology.  Ecology. (1987);  68 27-42
  • 3 Bullock J. M., Clarke R. T.. Long distance seed dispersal by wind: measuring and modelling the tail of the curve.  Oecologia. (2000);  124 506-521
  • 4 Cain M. L., Dammann H., Muir A.. Seed dispersal and the Holocene migration of woodland herbs.  Ecological Monographs. (1998);  68 325-347
  • 5 Cain M. L., Milligan B. G., Strand A. E.. Long-distance seed dispersal in plant populations.  American Journal of Botany. (2000);  87 1217-1227
  • 6 Clark J. S., Fastie C., Hurtt G., Jackson S. T., Johnson C., King G. A., Lewis M., Lynch J., Pacala S., Prentice  et al. C.. Reid's Paradox of Rapid Plant Migration.  BioScience. (1998);  48 13-24
  • 7 Greene D. F., Johnson E. A.. A model of wind dispersal of winged or plumed seeds.  Ecology. (1989);  70 339-347
  • 8 Greene D. F., Johnson E. A.. Fruit abscission in Acer saccharinum with reference to seed dispersal.  Canadian Journal of Botany. (1992);  70 2277-2283
  • 9 Greene D. F., Johnson E. A.. Long-distance wind dispersal of tree seeds.  Canadian Journal of Botany. (1995);  73 1036-1045
  • 10 Higgins S. I., Richardson D. M.. Predicting plant migration rates in a changing world: The role of long-distance dispersal.  American Naturalist. (1999);  153 464-475
  • 11 Hildebrand F.. Die Verbreitungsmittel der Pflanzen. Leipzig; Engelmann (1873): 183
  • 12 Horn H. S., Nathan R., Kaplan N. L.. Long-distance dispersal of tree seeds by wind.  Ecological Research. (2001);  16 877-885
  • 13 Jongejans E., Schippers P.. Modeling seed dispersal by wind in herbaceous species.  Oikos. (1999);  87 362-372
  • 14 Kohlermann L.. Untersuchungen über die Windverbreitung der Früchte und Samen mitteleuropäischer Waldbäume.  Forstwissenschaftliches Centralblatt. (1950);  69 606-624
  • 15 Luftensteiner H. W.. Untersuchungen zur Verbreitungsbiologie von Pflanzengemeinschaften an vier Standorten in Niederösterreich. Bibliotheka Botanica, Stuttgart; Schweizerbartsche Buchhandlung (1982): 68
  • 16 Mayer F.. Long Distance Dispersal of Weed Diaspores in Agricultural Landscapes - The Scheyern Approach, Vol. 47. Aachen; Shaker (2000)
  • 17 Müller-Schneider P.. Verbreitungsbiologie der Blütenpflanzen Graubündens.  Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel. (1986);  85 263
  • 18 Nathan R., Katul G. G., Horn H. S., Thomas S. M., Oren R., Avissar R., Pacala S. W., Levin S. A.. Mechanisms of long-distance dispersal of seeds by wind.  Nature. (2002);  418 409-413
  • 19 Nathan R., Safriel U. N., Noy-Meir I.. Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind.  Ecology. (2001);  82 374-388
  • 20 Nathan R., Safriel U. N., Noy-Meir I., Schiller G.. Seed release without fire in Pinus halepensis, a Mediterranean serotinous wind-dispersed tree.  Journal of Ecology. (1999);  87 659-669
  • 21 Schmidt W.. Die Verbreitung von Samen und Blütenstaub durch die Luftbewegung.  Österreichische Botanische Zeitschrift. (1918);  67 313-328
  • 22 Tackenberg O.. Methoden zur Bewertung gradueller Unterschiede des Ausbreitungspotentials von Pflanzenarten. - Modellierung des Windausbreitungspotentials und regelbasierte Ableitung des Fernausbreitungspotentials, Vol. 347. Berlin; Cramer (2001): 138
  • 23 Tackenberg O.. Modeling long distance dispersal of plant diaspores by wind.  Ecological Monographs. (2003);  73 173-189
  • 24 Tackenberg O., Poschlod P., Bonn S.. Assessment of wind dispersal potential in plant species.  Ecological Monographs. (2003);  73 191-205

O. Tackenberg

Institut für Botanik
Universität Regensburg

93040 Regensburg

Germany

Email: oliver.tackenberg@biologie.uni-regensburg.de

Section Editor: H. Rennenberg