Plant Biol (Stuttg) 2003; 5(4): 383-392
DOI: 10.1055/s-2003-42709
Original Paper

Georg Thieme Verlag Stuttgart · New York

Daucus carota Cells Contain Specific DNA Methyltransferase Inhibitors that Interfere with Somatic Embryogenesis

G. Pedrali-Noy* 1 , G. Bernacchia* 2 , M. do Rosario Alvelos 3 , R. Cella 3 *equally contributed
  • 1Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Pavia, Italy
  • 2Dipartimento di Biologia, Università di Ferrara, Ferrara, Italy
  • 3Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
Further Information

Publication History

Publication Date:
02 October 2003 (online)

Abstract

Results reported in this paper show that carrot cells contain a thermostable inhibiting activity for cytosine-5-DNA methyltransferase that, upon filtration chromatography, can be resolved into three major peaks. Inhibiting activity was found in all plant species tested, though at a concentration lower than in carrot. These inhibiting activities differ in size, sensitivity to various hydrolytic treatments, specificity for DNA METases of eukaryotic and bacterial origin and kinetics of inhibition. Results of chemical analyses indicate that the inhibitors differ from lipidic inhibitors described in Escherichia coli and Streptomyces sp. and, given their sensitivity to proteinase K, appear to have a proteinaceous nature. The addition of these inhibitors (Sephadex G25 peak II and peak III) to actively growing suspension rice cells reduced the rate of in vivo DNA methylation without interfering with DNA synthesis. Peak II also induced a general demethylation effect in carrot cell suspension, even if weaker than that caused by 5-azacytidine. Interestingly, inhibitors suppressed carrot embryogenesis but did not prevent undifferentiated cell proliferation of suspension cultures.

References

  • 1 Adams R. L. P.. Eukaryotic DNA methyltransferase-structure and function.  BioEssays. (1995);  17 139-145
  • 2 Adams R. L. P., Burdon R. H.. Molecular biology of DNA methylation. New York; Springer Verlag (1985)
  • 3 Balestrazzi A., Bernacchia G., Cella R., Ferretti L., Sora S.. Preparation of high molecular weight plant DNA and its use for artificial chromosome construction.  Plant Cell Reports. (1991);  10 315-320
  • 4 Banks J. A., Masson P., Federoff N.. Molecular mechanism in the developmental regulation of the maize suppressor-mutator transposable element.  Genes Dev.. (1988);  2 1364-1380
  • 5 Barbes C., Sanchez J., Yerba M. J., Robert-Gero M., Hardsson C.. Effects of sinefungin and S-adenosylhomocysteine on DNA and protein methyltransferases from Streptomyces and other bacteria.  FEMS Microbiol. Lett.. (1990);  69 239-244
  • 6 Bernacchia G., Primo A., Giorgetti L., Pitto L., Cella R.. Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression.  Plant J.. (1998);  13 317-330
  • 7 Bohlen P., Stein S., Dairman W., Udenfriend S.. Fluorometric assay of proteins in the nanogram range.  Arch. Biochem. Biophys.. (1973);  155 213-220
  • 8 Bolden A., Ward C., Siedlecki J. A., Weissbach A.. DNA methylation: Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides.  J. Biol. Chem.. (1984);  259 12437-12443
  • 9 Burn J. A., Bagnall D. J., Metzger J. D., Dennis E. S., Peacock W. J.. DNA methylation, vernalization, and the initiation of flowering.  Proc. Natl. Acad. Sci. USA. (1993);  90 287-291
  • 10 Cedar H., Verdine G. L.. Gene expression: The amazing demethylase.  Nature. (1999);  397 568-569
  • 11 Christman J. K.. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.  Oncogene. (2002);  21 5483-5495
  • 12 Colot V., Rossignol J.-L.. Eukaryotic DNA methylation as an evolutionary device.  BioEssays. (1999);  21 402-411
  • 13 Doyle J. J., Doyle J. L.. Isolation of plant DNA from fresh tissue.  Focus. (1990);  12 13-15
  • 14 Falaschi A., Kornberg A.. A lipopolysaccharide inhibitor of a DNA methyl transferase.  Proc. Natl. Acad. Sci. USA. (1965);  54 1713-1720
  • 15 Fedoroff N. V., Banks J. A.. Is the suppressor-mutator element controlled by a basic development regulatory mechanism?.  Genetics. (1988);  120 559-577
  • 16 Finnegan E. J., Dennis E. S.. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. .  Nucl. Acids Res.. (1994);  21 2383-2388
  • 17 Finnegan E. J., Kovac K. A.. Plant DNA methyltransferases.  Plant Mol. Biol.. (2000);  43 189-201
  • 18 Finnegan E. J., Genger R. K., Peacock W. J., Dennis E. S.. DNA methylation in plants.  Ann. Rev. Plant Physiol. Plant Mol. Biol.. (1998);  49 223-247
  • 19 Finnegan E. J., Peacock W. J., Dennis E. S.. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development.  Proc. Natl. Acad. Sci. USA. (1996);  93 8449-8454
  • 20 Fojtova M., Kovarik A., Votruba I., Holy A.. Evaluation of the impact of S-adenosylhomocysteine metabolic pools on cytosine methylation of the tobacco genome.  Eur. J. Biochem.. (1998);  252 347-352
  • 21 Galaud J. P., Gaspar T., Boyer N.. Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism.  Physiol. Plant.. (1993);  87 25-30
  • 22 Giordano M., Mattachini M. E., Cella R., Pedrali-Noy G.. Purification and properties of a novel DNA methyltransferase from cultured rice cells.  Biochem. Biophys. Res. Commun.. (1991);  177 711-719
  • 23 Gruenbaum Y., Naveh-Many T., Cedar H., Razin A.. Sequence specificity of methylation in higher plant DNA.  Nature. (1981);  292 860-862
  • 24 Jones P. A.. Altering gene expression with 5-azacytidine.  Cell. (1985);  40 485-486
  • 25 Jones P. A.. The DNA methylation paradox.  Trends Genet.. (1999);  15 3437
  • 26 Klaas M., Amasino R. M.. DNA methylation is reduced in DNase I-sensitive regions of plant chromatin.  Plant Physiol.. (1989);  91 451-454
  • 27 Leonhardt H., Page A. W., Weier H.-U., Bestor T. H.. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei.  Cell. (1992);  71 865-873
  • 28 Li E., Bestor T. H., Jaenisch R.. Targeted mutation of DNA methyltransferase gene results in embryonic lethality.  Cell. (1992);  69 915-926
  • 29 Liu Y., Sun L., Jost J.-P.. In differentiating mouse myoblasts DNA methyltransferase is posttranscriptionally and posttranslationally regulated.  Nucl. Acids Res.. (1996);  24 2718-2722
  • 30 LoSchiavo F., Pitto L., Giuliano G., Torti G., Nuti-Ronchi V., Marazziti D., Vergara R., Orselli S., Terzi M.. DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs.  Theor. Appl. Genet.. (1989);  77 325-331
  • 31 Lowry O. H., Rosebrough N. J., Farr A., Randall R. J.. Protein measurement with the Folin phenol reagent.  J. Biol. Chem.. (1951);  193 265-275
  • 32 Messeguer R., Ganal M. W., Steffens J. C., Tanksley S. D.. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA.  Plant Mol. Biol.. (1991);  16 753-770
  • 33 Modrich P., Lehman I. R.. Enzymatic joining of polynucleotides. IX. A simple and rapid assay of polynucleotide joining (ligase) activity by measurement of circle formation from linear deoxyadenylate-deoxythymidylate copolymer.  J. Biol. Chem.. (1970);  245 3626-3636
  • 34 Nielsen E., Rollo F., Parisi B., Cella R., Sala F.. Genetic markers in cultured plant cells: different sensitivities to amethopterin, azetidine-2-carboxylic acid and hydroxyurea.  Plant Science Lett.. (1979);  15 113-125
  • 35 Palmgren G., Mattsson O., Okkels F. T.. Specific levels of DNA methylation in various tissues, cell lines, and cell lines of Daucus carota. .  Plant Physiol.. (1991);  95 174-178
  • 36 Pedrali-Noy G., Weissbach A.. Mammalian DNA methyltranferases prefer poly(dI-dC) as substrate.  J. Biol. Chem.. (1986);  261 7600-7602
  • 37 Podestà A., Castiglione M., Avanzi S., Montagnoli G.. Molecular geometry of antigen binding by a monoclonal antibody against 5-methylcytidine.  Int. J. Biochem.. (1993);  25 929-933
  • 38 Pradhan S., Adams R. L. P.. Distinct CG and CNG DNA methylation in Pisum sativum. .  Plant J.. (1995);  7 471-481
  • 39 Razin A., Kafri T.. DNA methylation from embryo to adult.  Prog. Nucl. Acid Res. Mol. Biol.. (1994);  48 53-81
  • 40 Ronemus J., Galbiati M., Ticknor C., Chen J., Dellaporta S. L.. Demethylation-induced developmental pleiotropy in Arabidopsis. .  Science. (1996);  273 654-656
  • 41 Smith S. S., Kaplan B. E., Sowers L. C., Newman E. M.. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation.  Proc. Natl. Acad. Sci. USA. (1992);  89 4744-4748
  • 42 Suzuki K., Nagao K., Tokunaga J., Katayama N., Uyeda M.. Inhibition of DNA methyltransferase by microbial inhibitors and fatty acids.  J. Enzyme Inhib.. (1996);  10 271-280
  • 43 Theiss G., Schleicher R., Schimpff-Weiland G., Follmann H.. DNA methylation in wheat. Purification and properties of DNA methyltransferase.  Eur. J. Biochem.. (1987);  167 89-96
  • 44 Vanyushin B. F.. Replicative DNA methylation in animal and higher plants. Trautner, T. A., ed. Current Topics in Microbiology and Immunology, Vol. 108. Berlin; Springer Verlag (1984): 99-114
  • 45 Vergara R., Verde F., Pitto L., Lo Schiavo F., Terzi M.. Reversible variations in the methylation pattern of carrot DNA during somatic embryogenesis.  Plant Cell Rep.. (1990);  8 697-700
  • 46 Yesufu H. M. I., Hanley A., Rinaldi A., Adams R. L. P.. DNA methylase from Pisum sativum. .  Biochem. J.. (1991);  273 469-475

G. Bernacchia

Dipartimento di Biologia
Università di Ferrara

Via Borsari 46

44100 Ferrara

Italy

Email: bhg@dns.unife.it

Section Editor: S. M. Wick

    >