Plant Biol (Stuttg) 2003; 5(3): 324-330
DOI: 10.1055/s-2003-40794
Original Paper

Georg Thieme Verlag Stuttgart · New York

The Impact of Different Long-Term Storage Conditions on the Viability of Lichen-Forming Ascomycetes and their Green Algal Photobiont, Trebouxia spp.

R. Honegger 1
  • 1Institute of Plant Biology, University of Zürich, Zürich, Switzerland
Further Information

Publication History

Publication Date:
22 July 2003 (online)

Abstract

Lichen-forming ascomycetes and their green algal photobionts completely die off within approximately 3 years of storage at room temperature. Macroscopically this is recognizable as a colour change, the green shades of the chlorophylls being lost. In fluorescent light microscopy preparations an increase in fungal autofluorescence and a significant decrease in chlorophyll autofluorescence in the Trebouxia cells was observed. In transmission electron microscopy preparations of Xanthoria parietina and its green algal photobiont, Trebouxia arboricola, the fungal membrane systems were found to be largely broken down whereas the shrivelled algal protoplast failed to rehydrate after storage at room temperature. When stored in the desiccated state at - 20 °C, both partners of the symbiosis stayed fully viable for up to 13 years, their colouration and chlorophyll fluorescence being unchanged. Viability was measured as ascospore ejection and germination rates in Xanthoria parietina, soredium germination rates in Xanthoria fallax, Hypogymnia physodes and Parmelia sulcata, and autospore formation rate in Trebouxia cells (green algal photobiont), which had been isolated from the thalli after rehydration. Thallus fragments of Xanthoria parietina were shown to grow normally after one week of storage in LN2 without any cryoprotectant. In the desiccated state deep-frozen samples can be repeatedly brought to room temperature and back to - 20 °C without any loss of viability. Cryopreservation is therefore a suitable mode of long-term storage of viable lichen thalli for experimental studies or transplant experiments.

References

  • 1 Becquerel P.. Réviviscence du Xanthoria parietina desseché avec sa faune, six ans dans le vide et deux semaines à - 189 °C. Ses consequences biologiques.  Comptes rendus de l'Académie des Sciences. (1948);  226 1413-1415
  • 2 Dahmen H., Staub Th., Schwinn F. J.. Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen.  Phytopathology. (1983);  73 241-246
  • 3 Fiechter E., Honegger R.. Seasonal variations in the fine structure of Hypogymnia physodes (lichenized Ascomycetes) and its Trebouxia photobiont.  Plant Systematics and Evolution. (1988);  158 249-263
  • 4 Friedl T.. Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18 S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae).  Journal of Phycology. (1995);  31 632-639
  • 5 Deason T. R., Bold H. C.. Phycological studies. Exploratory studies of Texas soil algae. University of Texas Publication; (1960)
  • 6 Hohl H. R., Iselin K.. Liquid nitrogen preservation of zoosporic fungi. Fuller, M. S. and Jaworski, A., eds. Zoosporic Fungi in Teaching and Research. Athens; SEPC (1987): 143-145
  • 7 Honegger R.. A simple outdoor culturing technique for the foliose macrolichens Xanthoria parietina and Parmelia sulcata. .  Botanica Helvetica. (1993);  103 223-229
  • 8 Honegger R.. Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spatial problems at the cellular level during drought stress events.  Canadian Journal of Botany. (1995);  73 (Suppl. 1) 569-587
  • 9 Honegger R.. Mycobionts. Nash, T. H., ed. The Biology of Lichens. Cambridge; Cambridge University Press (1996): 25-36
  • 10 Honegger R., Peter M., Scherrer S.. Drought stress-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens.  Protoplasma. (1996);  190 221-232
  • 11 Honegger R.. The lichen symbiosis - what is so spectacular about it?.  Lichenologist. (1998);  30 193-212
  • 12 Kappen L.. Ecophysiological relationships. Galun, M., ed. CRC Handbook of Lichenology, Vol. 2. Boca Raton; CRC Press (1988): 37-100
  • 13 Keller P., Mukhtar A., Galun M.. Resistance: are there limits to resistance in lichens?.  Symbiosis. (1995);  18 87-88
  • 14 Lange O. L.. Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung.  Flora. (1953);  140 39-97
  • 15 Marti J.. Die Toxizität von Zink, Schwefel- und Stickstoffverbindungen auf Flechten-Symbionten.  Bibliotheca Lichenologica. (1985);  21 129
  • 16 Wyndham J.. Trouble with Lichen. Harmondsworth, Middlesex; Penguin Books (1960)
  • 17 Yamamoto Y., Kinoshita Y., Takahagi T., Kroken S., Kurokawa T., Yoshimura I.. Factors affecting discharge and germination of lichen ascospores.  Journal of the Hattori Botanical Laboratory. (1998);  85 267-278

R. Honegger

Institut für Pflanzenbiologie

Zollikerstrasse 107

8008 Zürich

Switzerland

Email: rohonegg@botinst.unizh.ch

Section Editor: H. M. Jahns