Subscribe to RSS
DOI: 10.1055/s-2002-35270
Hypoxisch-ischämische Enzephalopathie
Hypoxic-Ischemic Brain Injury Wir danken Herrn Dr. G. Burrows, Medizinische Universitätsklinik Würzburg, und Prof. Dr. K. V. Toyka für die kritische Durchsicht des ManuskriptsPublication History
Publication Date:
05 November 2002 (online)
Zusammenfassung
Diese Übersicht beschreibt die Pathophysiologie und Nosologie der hypoxisch-ischämischen Hirnschädigung. Nach einer kurzen Einführung in die Mechanismen des hypoxischen neuronalen Zelltods werden die verschiedenen Möglichkeiten zur Einschätzung der Prognose insbesondere nach Reanimationen unter klinischen und zusatzdiagnostischen Gesichtspunkten für die Perakutphase und an den folgenden Tagen erörtert. Am sichersten ist eine Prognose zu stellen anhand serieller klinischer-neurologischer Untersuchung und somatosensibel evozierten Potenzialen. Zwei unabhängige Studien zeigten aktuell den therapeutischen Nutzen einer Behandlung mit moderater Hypothermie nach Reanimation.
Abstract
This article reviews the pathophysiology and clinical course of anoxic brain damage. A short introduction into the mechanisms of hypoxic neuronal death is given. Clinical, brain imaging, biochemical, and electrophysiological parameters of the hyperacute period as well as during the following days are discussed especially with respect to outcome prediction after cardiopulmonary resuscitation. Most useful parameters are derived from serial clinical neurologic examination and from somatosensory evoked potentials. Recently, two clinical studies showed benefit from treatment with moderate hypothermia after cardiopulmonary resuscitation.
Literatur
-
1 Ginsberg M D.
Models of cerebral ischemia in the rodent. In: Schurr A (ed) Cerebral ischemia and resuscitation. Boca Baton; CRC Press 1990: 2-25 - 2 Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998; 56 149-171
- 3 Pulsinelli W A, Brierley J B, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982; 11 491-498
- 4 Böttiger B W, Schmitz B, Wiessner C. et al . Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab. 1998; 18 1077-1087
- 5 Hossmann K A, Oschlies U, Schwindt W, Krep H. Electron microscopic investigation of rat brain after brief cardiac arest. Acta Neuropath (Berl). 2001; 101 101-113
- 6 Block F. Global ischemia and behavioural deficits. Prog Neurobiol. 1999; 58 279-295
- 7 Petito C K, Feldman E, Pulsinelli W A, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987; 37 1281-1286
- 8 Haupt W F, Firsching R, Hansen H C. et al . Das akute postanoxische Koma: klinische, elektrophysiologische, biochemische und bildgebende Befunde. Intensivmed. 2000; 37 597-607
- 9 Dirnagl U, Iadecola C, Moskowitz M A. Pathobiology of ischemic stroke: an integrated view. Trends Neurosci. 1999; 22 391-397
- 10 Linnik M D, Zobrist R H, Hatfield M D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke. 1993; 24 2002-2009
- 11 O'Donnell B R, Bickler P E. Influence of pH on calcium influx during hypoxia in rat cortical brain slices. Stroke. 1994; 25 171-177
- 12 Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999; 9 119-131
- 13 Allen S M, Rothwell N J. Cytokines and acute neurodegeneration. Nature Rev Neurosci. 2001; 2 734-744
- 14 Hossmann K A. The hypoxic brain. Adv Exp Med Biol. 1999; 474 155-169
- 15 Hossmann K A. Glutamate-mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revised. Brain Pathol. 1994; 4 23-36
- 16 Bagenholm R, Nilsson U A, Kjellmer I. Formation of free radicals in hypoxic ischemic brain damage in the neonatal rat. Brain Res. 1997; 773 132-138
- 17 Böttiger B W, Krumnikl J J, Gass P. et al . The cerebral „no-reflow” phenomenon after cardiac arrest in rats - influence of low-flow reperfusion. Resuscitation. 1997; 34 79-87
- 18 Shaffner D H, Eleff S M, Koehler R C, Traystman R J. Effect of no-flow interval and hypothermia on cerebral blood flow and metabolism during cardiopulmonary resuscitation in dogs. Stroke. 1998; 29 2607-2615
- 19 Palmer C. Hypoxic-ischemic encephalopathy, therapeutic approaches against microvascular injury, and role of neurophils, PAF, and free radicals. Clinics Perinatol. 1995; 22 481-517
- 20 Vanucci R C, Towfighi J, Brucklacher R M, Vannuci S J. Effect of extreme hypercapnia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res. 2001; 49 799-803
- 21 Oku K, Kuboyama K, Safar P. et al . Cerebral and systemic arteriovenous oxygen monitoring after cardiac arrest. Inadequate cerebral oxygen delivery. Resuscitation. 1987; 27 141-152
- 22 Vannucci R C, Christensen M A, Yagen J Y. Nature, time course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Paed Neurol. 1993; 9 29-34
- 23 Cohan S L, Mun S K, Petite S J. et al . Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke. 1989; 20 761-765
- 24 Nedelcu J, Klein M A, Aguzzi A. et al . Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage. Pediatr Res. 1999; 46 297-304
- 25 Gueugniaud P Y, Garcia-Darennes F, Gaussorgues P. et al . Prognostic significance of early intracranial and cerebral perfusion pressures in post-cardiac arrest anoxic coma. Intensive Care Med. 1991; 17 392-398
- 26 Mishra O P, Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull. 1999; 48 233-238
- 27 Adams N, Strauss M, Schluchter M, Redline S. Relation of measures of sleep-disordered breathing to neuropsychological functioning. Am J Respir Crit Care Med. 2001; 163 1626-1631
- 28 Wijdicks E FM, Parisi J E, Sharbrough F W. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994; 35 239-243
- 29 Hallett M, Chadwick D, Adam J, Marsden C D. Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus. J Neurol Neurosurg Psychiatr. 1977; 40 253-264
- 30 Lance J W, Adams R D. Negative myoclonus in posthypoxic patients. Mov Disord. 2001; 16 162-163
- 31 Wehrhahn K J, Brown P, Thompson P D, Marsden C D. The clinical features and prognosis of chronic posthypoxic myoclonus. Mov Disord. 1997; 12 216-220
- 32 Kassell N F, Torner J C, Haley E C. et al . The international cooperative study on the timing of aneurysm surgery. J Neurosurg. 1990; 73 18-36
- 33 Fujioka M, Okuchi K, Sakaki T. et al . Specific changes in human brain following reperfusion after cardiac arrest. Stroke. 1994; 25 2091-2095
- 34 Wijdicks E FM, Campeau N G, Miller G M. MR imaging in comatose survivors of cardiac resuscitation. AJNR. 2001; 22 1561-1565
- 35 Arbelaez A, Castillo M, Muktierij S K. Diffusion-weighted MR imaging of global ischemic cerebral anoxia. AJNR. 1999; 20 999-1007
- 36 Behar K L, Rothman D L, Hossmann K A. NMR spectroscopic investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metabol. 1989; 9 655-665
- 37 Lechleitner P, Felber G, Birbamer S. et al . Proton magnetic resonance spectroscopy of brain after cardiac resuscitation. Lancet. 1992; 340 913
- 38 Falini A, Barkovich A J, Calabrese G. et al . Progressive brain failure after diffuse hypoxic ischemic brain injury: a serial MR and proton MR spectroscopic study. AJNR. 1998; 19 648-652
- 39 Rupright J, Woods E A, Singh A. Hypoxic brain injury: evaluation by single photon emission computed tomography. Arch Phys Med Rehabil. 1996; 77 1205-1208
- 40 Zijlstra J G, Schaafsma A, deJong B M. et al . Early positron emission tomography in posthypoxic encephalopathy. Int Care Med. 1997; 23 S186
- 41 Niedermeyer E, Sherman D L, Geocadin R J. et al . The burst-suppression electroencephalogram. Clin EEG. 1999; 30 99-105
- 42 Rothstein T L. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol. 2000; 17 486-497
- 43 Hume A L, Cant B R, Shaw N A. Central somatosensory conduction time in comatose patients. Ann Neurol. 1979; 5 379-384
- 44 Madl C, Kramer L, Domanovits H. et al . Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med. 2000; 28 721-726
- 45 Lesnick J E, Michelle J J, Simeone F A. et al . Alteration of somatosensory evoked potentials in response to global ischemia. J Neurosurg. 1984; 60 490-494
- 46 Gendo A, Kramer L, Häfner M. et al . Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Med. 2001; 27 1305-1311
- 47 Guerit J M, de Tourtchaninoff M, Soveges L, Mahieu P. The prognostic value of three-modality evoked potentials in anoxic and traumatic comas. Neurophysiol Clin. 1993; 23 209-226
- 48 Guerit J M. The interest of multimodality evoked potentials in the evaluation of chronic coma. Acta Neurol Belg. 1994; 94 174-182
- 49 Ganes T, Lundar T. EEG and evoked potentials in comatose patients with severe brain damage. Electroencephalogr and Clin Neurophysiol. 1988; 69 6-13
- 50 Sohmer H, Freeman S, Gafni M, Goiten K. The depression of the auditory nerve brain stem evoked response. Electroencephalogr Clin Neurophysiol. 1986; 64 334-338
- 51 Roine R O, Somer H, Kaste M. et al . Neurological outcome after out-of-hospital cardiac arrest. Arch Neurol. 1989; 46 753-756
- 52 Schaarschmidt H, Prange H W. Neuron specific enolase - a marker of cerebral damage in blood. J Clin Chem Clin Biochem. 1989; 27 835-836
- 53 Rosén H, Sunnerhagen S, Herlitz J. et al . Serum levels of the brain-derived proteins S100 and NSE predict long-term outcome after cardiac arrest. Resuscitation. 2001; 49 183-191
- 54 Dauberschmidt R, Zinsmeyer J, Mochen H, Meyer M. Changes of neuron-specific enolase concentration in plasma after cardiac arrest and resuscitation. Molecul Chem Neuropathol. 1991; 14 237-245
- 55 Rosén H, Rosengren L, Herlitz J, Blomstrand C. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke. 1998; 29 473-477
- 56 DiBari M, Chiarlone M, Fumagalli S. et al . Cardiopulmonary resuscitation of older, in hospital patients: immediate efficiacy and long-term outcome. Crit Care Med. 2000; 28 2320-2325
- 57 Engdahl J, Bang A, Lindquist J, Herlitz J. Can we define patients with no and those with some chance of survival when found in asystole out of hospital?. Am J Cardiol. 2000; 86 610-614
- 58 Hamel M B, Goldman L, Teno J. et al . Identification of comatose patients at high risk for death or severe disability. JAMA. 1995; 273 1842-1848
- 59 Rogove H J, Safar P, Sutton-Tyrrell K, Abramson N S. Old age does not negate good cerebral outcome after cardiopulmonary resuscitation: analyses from the brain resuscitation trials. Crit Care Med. 1995; 23 18-25
- 60 Young G B, Kreeft J H, McLachlan R S, Demelo J. EEG and clinical associations with mortality in comatose patients in a general intensive care unit. J Clin Neurophysiol. 1999; 16 354-360
- 61 Zoch T W, Desbiens N A, DeStefano F. et al . Short- and long-term survival after cardiopulmonary resuscitation. Arch Intern Med. 2000; 160 1969-1973
- 62 Mullie A, Verstringe P, Buylaert W. et al . Predictive value of Glasgow Coma Score for awakening after out-of-hospital cardiac arrest. Lancet. 1988; ii 137-140
- 63 Zandbergen E GJ, de Haan R J, Koelman J HTM, Hijdra A. Prediction of poor outcome in anoxic-ischemic coma. J Clin Neurophysiol. 2000; 17 498-510
- 64 Rewers M, Tilgreen R E, Crawford M E, Hjortso N C. One-year survival after out-of-hospital cardiac arrest in Copenhagen according to the Utstein style. Resuscitation. 2000; 47 137-146
- 65 Timerman A, Sauaia N, Piegas L S. et al . Prognostic factors of the results of cardiopulmonary resuscitation in a cardiology hospital. Arq Bras Cardiol. 2001; 77 142-160
- 66 Bulut S, Aengevaeren W R, Luijten H J, Verheugt F W. Successful out-of-hospital cardiopulmonary resuscitation: what is the optimal in-hospital treatment strategy?. Resuscitation. 2000; 47 155-161
- 67 Bates D, Caronna J J, Cartlidge E F. et al . A prospective study of nontraumatic coma: methods and results in 310 patients. Ann Neurol. 1977; 2 211-220
- 68 Chen R, Bolton C F, Young G B. Prediction of outcome in patients with anoxic coma: a clinical and electrophysiologic study. Crit Care Med. 1996; 24 672-678
- 69 Levy D E, Caronna J J, Singer B H. et al . Predicting outcome from hypoxic-ischemic coma. JAMA. 1985; 253 1420-1426
- 70 Snyder B D, Loewenson R B, Gumnit R J. et al . Neurologic prognosis after cardiopulmonary arrest. II. Level of consciousness. Neurology. 1980; 30 52-58
- 71 Grubb N R, O'Carroll R, Cobbe S M. et al . Chronic memory impairment after cardiac arrest outside hospital. BMJ. 1996; 313 143-146
- 72 Wilson B A. Cognitive functioning of adult survivors of cerebral hypoxia. Brain Inj. 1996; 10 863-874
- 73 Ahmed I. Use of somatosensory evoked responses in the prediction of outcome from coma. Clin Electroencephalogr. 1988; 19 78-86
- 74 Bassetti C, Bomio F, Mathis J, Hess C W. Early prognosis of coma after cardiac arrest. A prospective clinical, electrophysiological, and biochemical study of 60 patients. J Neurol Neurosurg Psychiatr. 1996; 61 610-615
- 75 Multi-Society Task Force on PVS . Medical aspects of the persistent vegetative states (I und II). N Engl Med. 1994; 330 1499-1508, 1572 - 1579
- 76 Fertl E, Vass K, Sterz F. et al . Neurological rehabilitation of severely disabled cardiac arrest survivors. Resuscitation. 2000; 47 231-239
- 77 Hagel K, Rietz S. Die Prognose des apallischen Syndroms. Anästhesist. 1998; 47 677-682
- 78 Rosenberg G A, Johnson S F, Brenner R P. Recovery of cognition after prolonged vegetative state. Ann Neurol. 1977; 2 167-168
- 79 Sazbon L, Zagreba F, Ronen J. et al . Course and outcome of patients in vegetative state of nontraumatic aetiology. J Neurol Neurosurg Psychiatr. 1993; 56 407-409
- 80 Puchalski C M, Zhong Z, Jacobs M M. et al . Patients who want their family and physician to make resuscitation decisions for them: observations from SUPPORT and HELP. J Am Geriatr Soc. 2000; 48 (S5) 84-90
- 81 Shewmon D A, DeGiorgio C M. Early prognosis in anoxic coma. Reliability and rationale. Neurol Clin. 1989; 7 823-843
- 82 Saltuari L, Marosi M. Coma after cardiac arrest: will he recover all right?. Lancet. 1994; 343 1052
- 83 Herlitz J, Andreasson A C, Bang A. et al . Long-term prognosis among survivors after in-hospital arrest. Resuscitation. 2000; 45 167-171
- 84 Edgren E, Hedstrand U, Kelsey S. et al . Assessment of neurological prognosis in comatose survivors of cardiac arrest. Lancet. 1994; 343 1055-1059
- 85 Berek K, Schinnerl A, Traweger C. et al . The prognostic significance of coma-rating, duration of anoxia, and cardiopulmonary resuscitation in out-of-hospital cardiac arrest. J Neurol. 1997; 244 556-561
- 86 Gallagher E J, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest. JAMA. 1995; 274 1922-1925
- 87 Longstreth W T, Diehr P, Inui T S. Prediction of awakening after out-of-hospital cardiac arrest. N Engl J Med. 1983; 308 1378-1382
- 88 McCullough P A, Thompson R J, Tobin K J. et al . Validation of a decision support tool for the evaluation of cardiac arrest victims. Clin Cardiol. 1998; 21 195-200
- 89 McCullough P A, Sandberg K R, Thompson R J. Predicting outcomes after cardiopulmonary resuscitation. Arch Intern Med. 2001; 161 615-616
- 90 Snyder B D, Gumnit R J, Leppik I E. et al . Neurologic prognosis after cardiopulmonary arrest. IV. Brainstem reflexes. Neurology. 1981; 31 1092-1097
- 91 Zandbergen E GJ, de Haan R J, Stoutenbeck C P. et al . Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998; 352 1808-1812
- 92 Earnest M P, Breckinridge J C, Yarnell P R, Oliva P B. Quality of survival after out-of-hospital cardiac arrest: predictive value of early neurologic evaluation. Neurology. 1979; 29 56-60
- 93 Pifferi S, Codazzi D, Savioli M, Langer M. Early prediction of neurologic prognosis after post-anoxic coma. Intensive Care Med. 1998; 24 535-536
- 94 Wolf R L, Zimmerman R A, Clancy R, Haselgrove J H. Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury. Radiology. 2001; 218 825-833
- 95 Synek V M. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol. 1988; 5 161-174
- 96 Synek V M. EEG abnormality grades and subdivisions of prognostic importance in traumatic and anoxic coma in adults. Clin Electroencephalogr. 1988; 19 160-166
- 97 Young G B, McLachlan R S, Kreeft J H, Demelo J D. An electroencephalographic classification for coma. Can J Neurol Sci. 1997; 24 320-325
- 98 Rothstein T L, Thomas E M, Sumi S M. Predicting outcome in hypoxic ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol. 1991; 79 101-107
- 99 Synek V M. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr. 1990; 21 25-30
- 100 Berkhoff M, Donati F, Bassetti C. Postanoxic alpha (theta) coma: a reappraisal of its prognostic significance. Clin Neurophysiol. 2000; 111 297-304
- 101 Kaplan P W, Genoud D, Ho T W, Jallon P. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol. 1999; 110 205-213
- 102 Fauvage B, Combes P. Isoelectric electroencephalogram and loss of evoked potentials in a patient who survived cardiac arrest. Crit Care Med. 1993; 21 472-475
- 103 Madl C, Grimm G, Kramer L. et al . Early prediction of individual outcome after cardiopulmonary resuscitation. Lancet. 1993; 341 855-858
- 104 Sherman A L, Tirshwell D L, Micklesen P J. et al . Somatosensory potentials, CSF creatine kinase BB activity, and awakening after cardiac arrest. Neurology. 2000; 54 889-894
- 105 Longstreth W T, Clayson K J, Sumi S M. Cerebrospinal fluid and serum creatine kinase BB activity after out-of-hospital cardiac arrest. Neurology. 1981; 31 455-458
- 106 Martens P. Serum neuron-specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors. Acad Emerg Med. 1996; 3 126-131
- 107 Martens P, Raabe A, Johnsson P. Serum S-100 and Neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke. 1998; 29 2363-2366
- 108 Roine R O, Somer H, Kaste M. et al . Neurological outcome after out-of-hospital cardiac arrest. Arch Neurol. 1989; 46 753-756
- 109 Tirshwell D L, Longstreth W T, Rauch-Matthews M E. et al . Cererbrospinal fluid creatine kinase BB isoencyme activity and neurologic prognosis after cardiac arrest. Neurology. 1997; 48 352-357
- 110 Kärkelä J, Bock E, Kaukinen S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. J Neurol Sci. 1993; 116 100-109
- 111 Zandbergen E GJ, de Haan R J, Hijdra A. Systematic review of prediction of poor outcome in anoxic-ischaemic coma with biochemical markers of brain damage. Intensive Care Med. 2001; 27 1661-1667
- 112 Prange H W, Aue G, Frauendorf H, Reiber H. Die neuronenspezifische Enolase als Prognosemarker bei zerebraler Hypoxie. Intensivmed. 1995; 32 17-22
- 113 Schörkhuber W, Kittler H, Sterz F. et al . Time course of serum neuron-specific enolase. A predictor of neurological outcome in patients resuscitated from cardiac arrest. Stroke. 1999; 30 1598-1603
- 114 Fogel W, Krieger D, Veith M. et al . Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit Care Med. 1997; 25 1133-1138
- 115 Torossian A, Zielmann S, Schaarschmidt H. et al . Erste Ergebnisse der Wertigkeit der Neuronen-spezifischen Enolase als prognostische Variable nach Reanimation. Anästhesist. 1992; 41 720-721
- 116 Mussack T, Biberthaler P, Kanz K G. et al . S-100b, sE-selectin, and sP-selectin for evaluation of hypoxic brain damage in patients after cardiopulmonary resuscitation: a pilot study. World J Surg. 2001; 25 539-543
- 117 Gluckman P D, Pinal C S, Gunn A J. Hypoxic-ischemic brain injury in the newborn: pathophysiology and potential strategies for interventions. Semin Neonatol. 2001; 6 109-120
- 118 Gire C, Nicaise C, Roussel M. et al . Encephalopathie hypoxo-ischemique du nouveau-ne a terme. Neurophysiol Clin. 2000; 30 97-107
- 119 Goodwin S R, Friedman W A, Bellefleur M. Is it time to use evoked potentials to predict outcome in comatose children and adults?. Crit Care Med. 1991; 19 518-524
- 120 Heindl U T, Laub M C. Outcome of persistent vegetative state following hypoxic or traumatic brain injury in children and adolescents. Neuropediatrics. 1996; 27 94-100
- 121 Gray P H, Tudehope D I, Masel J P. et al . Perinatal hypoxic ischemic brain injury: prediction of outcome. Dev Med Child Neurol. 1993; 35 965-973
- 122 Amess P N, Penrice J, Wylezinska M. et al . Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischemic brain injury. Dev Med Child Neurol. 1999; 41 436-465
- 123 Sie L T, van der Knapp M S, van Wezel-Meijler G. et al . Early MR features of hypoxic-ischemic brain injury in neonates with periventricular densities on sonograms. AJNR. 2000; 21 852-861
- 124 Garcia-Alix A, Cabanas F, Pellicer A. et al . Neuron-specific enolase and myelin-basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics. 1994; 93 234-240
- 125 Block F, Schwarz M. Neuroprotektion beim Schlaganfall. Nervenarzt. 1999; 70 101-110
- 126 Katsuta K, Nakanishi H, Shirakawa K. et al . The neuroprotective effect of the novel noncompetitive NMDA antagonist, FR115427, in focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1995; 15 345-348
- 127 Ozyurt E, Graham D I, Woodruff G N, McCulloch J. Protective effect of the glutamate antagonist, MK-801, in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab. 1988; 8 138-143
- 128 Sauer D, Weber E, Lüöond G. et al . The competitive NMDA antagonist CGP 40116 permanently reduces brain damage after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 1995; 15 602-610
- 129 Valentino K, Newcom R, Gadbois T. et al . A selective N-type calcium channel antagonist protects against neuronal loss after global ischemia. Proc. Natl acad Sci (USA). 1993; 90 7894-7897
- 130 Giroux C, Scatton B. Ischemic stroke: treatment on the horizon. Eur Neurol. 1996; 36 61-64
- 131 Gillardon F, Kiprianova I, Sandkuhler J. et al . Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience. 1999; 93 1219-1222
- 132 Krep H, Brinker G, Schwindt W, Hossmann K A. Endothelin type A-antagonist improves long-term neurological recovery after cardiac arrest in rats. Crit Care Med. 2000; 28 2873-2880
- 133 Chan P H, Kawase M, Murakami K. et al . Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci. 1998; 18 8292-8299
- 134 Crumrine R C, Bergstrand K, Cooper A T. et al . Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke. 1997; 28 2230-2236
- 135 Brain Resuscitation Clinical Trial I Study Group . Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med. 1986; 314 397-403
- 136 Jastremski M, Sutton-Tyrrell K, Vaagenes P. et al . Glucocorticosteroid treatment does not improve neurologic recovery following cardiac arrest. JAMA. 1989; 262 3427-3430
- 137 Brain Resuscitation Clinical Trial I Study Group . Brain Resuscitation Clinical Trial II Study Group. A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med. 1991; 324 1225-1231
- 138 Gelman B, Schleien C, Lohe A, Kuluz J W. Selective brain cooling in infant piglets after cardiac arrest and resuscitation. Crit Care Med. 1996; 24 1009-1017
- 139 Nedelcu J, Klein M A, Aguzzi A, Martin E. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury. Brain Pathol. 2000; 10 61-71
- 140 Safar P, Klain M, Tisherman S. Selective brain cooling after cardiac arrest. Crit Care Med. 1996; 24 911-914
- 141 Thoresen M, Bagenholm R, Loberg E M. et al . Posthypoxic cooling of neonatal rats provides protection against brain injury. Arch Dis Child Fetal Neonatal Ed. 1996; 74 3-9
- 142 Towfighi J, Housman C, Heitjan D F. et al . The effect of focal cerebral cooling on perinatal hypoxic-ischemic brain damage. Acta Neuropathol (Berl). 1994; 87 598-604
- 143 Yager J Y, Asselin J. Effect of mild hypothermia on cerebral energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. Stroke. 1996; 27 919-925
- 144 Bernard S A, MacJones B, Horne M K. Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Ann Emerg Med. 1997; 30 146-153
- 145 Yanakawa Y, Ishihara S, Norio H. et al . Preliminary clinical outcome study of mild resuscitative hypothermia after out-of-hospital cardiopulmonary arrest. Resuscitation. 1998; 39 61-66
- 146 Bernard S A, Gray T W, Buist M D. et al . Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New Engl J Med. 2002; 346 557-563
- 147 The Hypothermia after Cardiac Arrest Study Group . Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. New Engl J Med. 2002; 346 549-556
- 148 Spandou E, Karkavelas G, Soubasi V. et al . Effect of ketamine on hypoxic-ischemic brain damage in newborn rats. Brain Res. 1999; 81 1-7
- 149 Cortey A, Monin P, Hascoet J M. et al . Effects of Phenobarbital on cerebral blood flow during hypoxia. Biol Neonate. 1994; 65 2396-2405
- 150 Yuan S Z, Runold M, Hagberg H. et al . Hypoxic-ischemic brain damage in immature rats: effects of adrenoceptor modulation. Europ J Paediatr Neurol. 2001; 5 29-35
- 151 Trivedi M, Ridley S A. Intermediate outcome of medical patients after intensive care. Anaesthesia. 2001; 56 841-846
- 152 Berek K, Jeschow M, Aichner F. The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults. Eur Neurol. 1997; 37 135-145
- 153 Brunko E, Zegers de Beyl D. Prognostic value of early cortical somatosensory evoked potentials after resuscitation from cardiac arrest. Electroencephalogr Clin Neurophysiol. 1987; 66 15-24
- 154 Ganji S, Peters G, Frazier E. Somatosensory and brainstem auditory evoked potential studies in nontraumatic coma. Clin Electroencephalogr. 1988; 19 55-67
- 155 Haupt W F, Schumacher A. Medianus-SEP und Prognose in der neurologischen Intensivmedizin. Z EEG EMG. 1988; 19 148-151
- 156 Kano T, Shimoda O, Morioka T. et al . Evaluation of the central nervous function in resuscitated comatose patients by multilevel evoked potentials. Resuscitation. 1992; 23 235-248
- 157 Madl C, Kramer L, Yegawehfar W. et al . Detection of nontraumatic comatose patients with no benefit from intensive care treatment by recording sensory evoked potentials. Arch Neurol. 1996; 53 512-516
- 158 Ragazzoni A, Cincotta M, Chiaramonti R. et al . Electrophysiological early predictors of outcome in patients with anoxic coma: EEG and SEPs. Clin Neurophysiol. 1999; 10 (S1) 245-246
- 159 Walser H, Mattle H, Keller H M, Janzer R. Early cortical median nerve somatosensory evoked potentials. Prognostic value in anoxic coma. Arch Neurol. 1986; 42 32-38
- 160 Walser H, Emre M, Janzer R. Somatosensory evoked potentials in comatose patients: correlation with outcome and neuropathological findings. J Neurol. 1986; 223 34-40
- 161 Zegers de Beyl D, Borenstein S, Dufaye P. et al . Irreversible cortical damage in acute postanoxic coma: predictive value of somatosensory evoked potentials. Transplant Proc. 1984; 16 98-101
- 162 Massey T H, Goe M R. Transient creatine kinase BB activity in serum or plasma after cardiac or respiratory arrest. Clin Chem. 1984; 30 50-55
Dr. W. Müllges,
Prof. Dr. G. Stoll
Neurologische Universitätsklinik
Josef-Schneider-Straße 11
97080 Würzburg
Email: wolfgang.muellges@mail.uni-wuerzburg.de