Plant Biol (Stuttg) 2001; 3(3): 234-243
DOI: 10.1055/s-2001-15201
Review Article
Georg Thieme Verlag Stuttgart ·New York

Possible Mechanisms of Adaptive Leaf Senescence

K. Ono 1,3 , Y. Nishi 2,4 , A. Watanabe 1,5 , I. Terashima 2
  • 1 Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, 113-0033, Japan
  • 2 Department of Biology, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, 560-0043, Japan
  • 3 Present address: as 2
  • 4 Present address: BASF Japan Ltd., Nanbu Bldg., 3-3 Kioicho, Chiyoda-ku, Tokyo 102-8570, Japan
  • 5 Deceased on 22 May 2000
Further Information

Publication History

February 12, 2001

May 10, 2001

Publication Date:
31 December 2001 (online)

Abstract

Availability of nitrogen almost always limits plant growth. Therefore, efficient use of nitrogen is essential for the plants. In upright plants, especially when they form dense plant stands, old, lower leaves are shaded by young, upper leaves. Nitrogenous compounds in such shaded leaves are degraded and re-allocated to the developing young, upper leaves. These processes raise efficiency of nitrogen use in photosynthetic production of the plant. For this to occur in the most effective way, leaves would need to sense their photosynthetic status in a plant and increase, maintain or decrease their photosynthetic capacity accordingly. Hypotheses that explain how a leaf can sense its photosynthetic status in the plant are reviewed. They include systems involving phytochrome, sugar-sensing, or cytokinin. Our experimental results with Helianthus annuus and Phaseolus vulgaris plants, which were subject to various shading treatments, are examined in the light of these hypotheses. Our experimental results favoured the sugar-sensing hypothesis: A leaf can sense demand of other plant parts for photosynthates produced by it and nitrogen abundance or deficiency by monitoring its sugar concentration. Problems that are to be challenged in the near future are also pointed out.

Abbreviations

DCMU: 3-(3,4-dichlorophenyl)-1,1-dimethylurea

NL: nitrogen content per unit leaf area

Pday: daily carbon gain per unit leaf area

Pmax: light-saturated rate of net photosynthesis of the leaf on area basis

PPFD: photosynthetically active photon flux density

PS I: photosystem I

PS II: photosystem II

Rubisco: ribulose-1,5-bisphosphate carboxylase/oxygenase

VPD: vapour pressure deficit

References

  • 01 Anten,  N. P. R., and Werger,  M. J. A.. (1996);  Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of Amaranthus dubius L. with a size hierarchy of individuals.  Oecologia. 105 30-37
  • 02 Anten,  N. P. R.,, Hikosaka,  K.,, and Hirose,  T.. (2000) Nitrogen utilization and the photosynthetic system. Leaf development and canopy growth. Marshall, B. and Roberts, J. A., eds. Sheffield; Sheffield Academic Press and CRC Press pp. 171-203
  • 03 Björkman,  O.. (1981) Responses to different quantum flux densities. Physiological Plant Ecology I. Responses to the physiological Environment. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. New York; Springer Verlag pp. 57-107
  • 04 Caemmerer,  S., and Farquhar,  G. D.. (1981);  Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.  Planta. 153 376-387
  • 05 Chabot,  B. F., and Hicks,  D. J.. (1982);  The ecology of leaf life spans.  Annual Review of Ecology and Systematics. 13 229-259
  • 06 Crafts-Brandner,  S. J.,, Holzer,  R.,, and Feller,  U.. (1998);  Influence of nitrogen deficiency on senescence and the amounts of RNA and protein in wheat leaves.  Physiologia Plantarum. 102 192-200
  • 07 Dale,  M. P., and Causten,  D. R.. (1992);  The ecophysiology of Veronica chamaedrys, V. montana and V. officialis. IV. Effects of shading on nutrient - a field experiment.  Journal of Ecology. 80 517-526
  • 08 Evans,  J. R.. (1989);  Photosynthesis and nitrogen relationships in leaves of C3 plants.  Oecologia. 78 9-19
  • 09 Field,  C.. (1983);  Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program.  Oecologia. 56 341-347
  • 10 Gan,  S., and Amasino,  R. M.. (1995);  Inhibition of leaf senescence by autoregulated production of cytokinin.  Science. 270 1986-1988
  • 11 Gray,  G. R.,, Chauvin,  L.-P.,, Sarhan,  F.,, and Huner,  N. P. A.. (1997);  Cold acclimation and freezing tolerance - A complex interaction of light and temperature.  Plant Physiology. 114 467-474
  • 12 Gray,  G. R.,, Savitch,  L. V.,, Ivanov,  A. G.,, and Huner,  N. P. A.. (1996);  Photosystem II excitation pressure and development of resistance to photoinhibition.  Plant Physiology. 110 61-71
  • 13 Harter,  K.,, Talke-Messerer,  C.,, Barz,  W.,, and Schäfer,  E.. (1993);  Light- and sucrose- dependent gene expression in photomixotrophic cell suspension cultures and protoplasts of rape (Brassica napus L.).  Plant Journal. 4 507-516
  • 14 Heldt,  H. W.. (1999) Pflanzenbiochemie 2. Auflage. Heidelberg, Berlin; Spektrum Akademischer Verlag
  • 15 Hidema,  J.,, Makino,  A.,, Mae,  T.,, and Ojima,  K.. (1991);  Photosynthetic characteristics of rice leaves under different irradiances from full expansion through senescence.  Plant Physiology. 97 1287-1293
  • 16 Hikosaka,  K.. (1996);  Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading.  Planta. 198 144-150
  • 17 Hikosaka,  K., and Hirose,  T.. (1997);  Leaf angle as a strategy for light competition: Optimal and evolutionarily stable light-extinction coefficient within a leaf canopy.  Ecosience. 4 501-507
  • 18 Hikosaka,  K., and Terashima,  I.. (1995);  A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use.  Plant, Cell and Environment. 18 605-618
  • 19 Hikosaka,  K.,, Okada,  K.,, Terashima,  I.,, and Katoh,  S.. (1993) Acclimation and senescence of leaves: their roles in canopy photosynthesis. Photosythesis and the Environments. Yamoto, H., and Smith, C. M., eds. Baltimore; American Society of Plant Physiologists pp. 1-13
  • 20 Hikosaka,  K.,, Terashima,  I.,, and Katoh,  S.. (1994);  Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves.  Oecologia. 97 451-457
  • 21 Hirose,  T., and Werger,  M. J. A.. (1987 a);  Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand.  Physiologia Plantarum. 70 215-222
  • 22 Hirose,  T., and Werger,  M. J. A.. (1987 b);  Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy.  Oecologia. 72 520-526
  • 23 Hirose,  T.,, Werger,  M. J. A.,, and van Rheenen,  J. W. A.. (1989);  Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. .  Ecology. 70 1610-1618
  • 24 Huner,  N. P. A.,, Öquist,  G.,, and Sarhan,  F.. (1998);  Energy balance and acclimation to light and cold.  Trends in Plant Science. 3 224-230
  • 25 Huner,  N. P. A.,, Maxwell,  D. P.,, Gray,  G. R.,, Savitch,  L.,, Krol,  M.,, Ivanov,  A. G.,, and Falk,  S.. (1996);  Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of photosystem II.  Physiologia Plantarum. 98 358-364
  • 26 Jang,  J.-C., and Sheen,  J.. (1997);  Sugar sensing in higher plants.  Trends in Plant Science. 2 208-214
  • 27 Jordi,  W.,, Schapendonk,  A.,, Davelaar,  E.,, Stoopen,  G. M.,, Pot,  C. S.,, De Visser,  R.,, Van Rhijn,  J. A.,, Gan,  S.,, and Amasino,  R. M.. (2000);  Increased cytokinin levels in transgenic PSAG12 -IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning.  Plant, Cell and Environment. 23 279-289
  • 28 Jurik,  T. W.,, Chabot,  J. F.,, and Chabot,  B. F.. (1979);  Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes.  Plant Physiology. 63 542-547
  • 29 Koch,  K. E.. (1996);  Carbohydrate-modulated gene expression in plants.  Annual Review of Plant Physiology and Plant Molecular Biology. 47 509-540
  • 30 Krapp,  A.,, Quick,  W. P.,, and Stitt,  M.. (1991);  Ribulise-1,5-bisphosphate carboxylase/oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream.  Planta. 186 58-69
  • 31 Krapp,  A.,, Hofmann,  B.,, Schaefer,  C.,, and Stitt,  M.. (1993);  Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: A mechanism for the sink regulation of photosynthesis?.  Plant Journal. 3 817-828
  • 32 Long,  S. P., and Drake,  B. G.. (1992) Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. Crop Photosytnesis: Spatial and Temporal Determination. Baker, N. R., and Thomas, H., eds. Amsterdam; Elsevier Science Publishers pp. 69-95
  • 33 Mae,  T.,, Thomas,  H.,, Gay,  A. P.,, Makino,  A.,, and Hidema,  J.. (1993);  Leaf development in Lolium temulentum: photosynthesis and photosynthetic proteins in leaves senescing under different irradiances.  Plant and Cell Physiology. 34 391-399
  • 34 Makino,  A.,, Mae,  T.,, and Ohira,  K.. (1986);  Colorimetric measurement of protein stained with Coomassie Brilliant Blue R on sodium dodecyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide.  Agricultural and Biological Chemistry. 50 1911-1912
  • 35 Miyazawa,  S.-I., and Terashima,  I.. (2001);  Slow leaf development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristcs and photosynthetic rate.  Plant, Cell and Environment. 24 in press
  • 36 Miyazawa,  S.-I.,, Satomi,  S.,, and Terashima,  I.. (1998);  Slow leaf development of evergreen broad-leaves tree species in Japanese warm temperate forests.  Annals of Botany. 82 859-869
  • 37 Mooney,  H. A.,, Field,  C.,, Gulmon,  S. L.,, and Bazzaz,  F. A.. (1981);  Photosynthetic capacity in relation to leaf position in desert vs old-field annuals.  Oecologia. 50 109-112
  • 38 Noodén,  L. D.,, Hillsberg,  J. W.,, and Schneider,  M. J.. (1996);  Induction of leaf senescence in Arabidopsis thaliana by long days through a light-dosage effect.  Physiologia Plantarum. 96 491-495
  • 39 Okada,  K.,, Inoue,  Y.,, Satoh,  K.,, and Katoh,  S.. (1992);  Effects of light on degradation of chlorophyll and proteins during senescence of detached rice leaves.  Plant and Cell Physiology. 33 1183-1191
  • 40 Ono,  K., and Watanabe,  A.. (1997);  Levels of endogenous sugars, transcripts of rbcS and rbcL, and RuBisCO protein in senescing sunflower leaves.  Plant and Cell Physiology. 38 1032-1038
  • 41 Ono,  K.,, Terashima,  I.,, and Watanabe,  A.. (1996);  Interaction between nitrogen deficit of a plant and nitrogen content in the old leaves.  Plant and Cell Physiology. 37 1083-1089
  • 42 Paul,  M. J., and Stitt,  M.. (1993);  Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose.  Plant, Cell and Environment. 16 1047-1057
  • 43 Pollock,  C. J., and Lloyd,  E. J.. (1978);  Acid invertase activity during senescence of excised leaf tissue of Loliun telementum. .  Zeitschrift für Pflanzenphysiologie. 90 79-84
  • 44 Pons,  T. L., and Bergkotte,  M.. (1996);  Nitrogen allocation in response to partial shading of a plant: possible mechanisms.  Physiologia Plantarum. 98 571-577
  • 45 Radin,  J. W., and Eidenback,  M. P.. (1986);  Carbon accumulation during photosynthesis in leaves of nitrogen and phosphorus-stressed cotton.  Plant Physiology. 82 869-871
  • 46 Rousseaux,  M. C.,, Hall,  A. J.,, and Sanchez,  R. A.. (1996);  Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower.  Physiologia Plantarum. 96 217-224
  • 47 Sakakibara,  H.,, Taniguchi,  M.,, and Sugiyama,  T.. (2000);  His-Asp phosphorelay signaling: a communication avenue between plants and their environment.  Plant Molecular Biology. 42 273-278
  • 48 Sawada,  S.,, Hayakawa,  K.,, Fukushi,  K.,, and Kasai,  M.. (1986);  Influence of carbohydrates on photosynthesis in single, rooted soybean leaves uses as a source-sink model.  Plant and Cell Physiology. 27 591-600
  • 49 Sawada,  S.,, Usuda,  H.,, Hasegawa,  Y.,, and Tsukui,  T.. (1990);  Regulation of ribulose-1,5-bisphosphate carboxylase activity in response to changes in the source/sink balance in single-rooted soybean leaves: the role of inorganic orthophosphate in activation of the enzyme.  Plant and Cell Physiology. 31 697-704
  • 50 Sěsták,  Z.. (1985) Photosynthesis during leaf development. The Hague; Dr. W. Junk Publishers
  • 51 Sheen,  J.. (1990);  Metabolic repression of transcription in higher plants.  Plant Cell. 2 1027-1038
  • 52 Sims,  D. A.,, Luo,  Y.,, and Seemann,  J. R.. (1998);  Importance of leaf versus whole plant CO2 environment for photosynthetic acclimation.  Plant, Cell and Environment. 21 1189-1196
  • 53 Smith,  H.. (2000) Plant architecture and light signals. Leaf development and canopy growth. Marshall, B. and Roberts, J. A., eds. Sheffield; Sheffield Academic Press and CRC Press pp. 118-144
  • 54 Smith,  H.,, Samson,  G.,, and Fork,  D. C.. (1993);  Photosynthetic acclimation to shade: probing the role of phytochromes using photomorphogenetic mutants of tomato.  Plant, Cell and Environment. 16 929-937
  • 55 Stitt,  M.,, von Shaewen,  A.,, and Willmitzer,  L.. (1990);  Sink regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes.  Planta. 183 40-50
  • 56 Terashima,  I., and Hikosaka,  K.. (1995);  Comparative ecophysiology of leaf and canopy photosynthesis.  Plant, Cell and Environment. 18 1111-1128
  • 57 Wingler,  A.,, von Schaewen,  A.,, Leegood,  R. C.,, Lea,  P. J.,, and Quick,  W. P.. (1998);  Regulation of leaf senescence by cytokinin, sugars, and light. Effects on NADH-dependent hydroxypyruvate reductase.  Plant Physiology. 116 329-335

K. Ono

Department of Biology
Graduate School of Science
Osaka University

1-16 Machikaneyama-cho
Toyonaka, Osaka
560-0043 Japan

Email: kiyomion@chaos.bio.sci.osaka-u.ac.jp

Section Editor: U. Lüttge