Plant Biol (Stuttg) 2001; 3(1): 88-97
DOI: 10.1055/s-2001-11753
Original Paper
Georg Thieme Verlag Stuttgart ·New York

C-Banding Patterns and Quantitative Karyotype Characteristics of Bulgarian Species of Crepis (Asteraceae)

D. Dimitrova 1 , J. Greilhuber 2
  • 1 Institute of Botany, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • 2 Institute of Botany, University of Vienna, Vienna, Austria
Further Information

Publication History

July 11, 2000

December 18, 2000

Publication Date:
31 December 2001 (online)

Abstract

Giemsa C-banded idiograms were established from eight Crepis species of Bulgarian origin (Crepis viscidula, C. paludosa, C. conyzaefolia, C. bithynica var. bithynica and var. fodorii, C. pulchra, C. sancta, C. setosa, and C. zacintha) that had been previously studied for genome size and karyotype shape using classical methods. All taxa are diploids with descending chromosome numbers, x = 6, 5, 4, and 3. Satellites were always heterochromatic. Small but distinct centromeric bands were of general occurrence (except perhaps in C. paludosa) and terminal bands were present at least in some chromosomes of the karyotypes. Higher amounts of heterochromatin in the form of terminal and intercalary bands were found in C. bithynica and C. zacintha, but banding patterns were not so specifically similar as to indicate common origin. There are a number of particular karyotypic characters which may turn out to be phylogenetically significant when corresponding information on many related taxa becomes available. Correlations of karyotypic parameters were calculated. In heterochromatin only percent heterochromatin, but not absolute heterochromatin amount, and genome size were significantly correlated. This is the result of a strong euchromatin variation but independent heterochromatin variation.

References

  • 01 Babcock,  E. B.. (1974 a);  The genus Crepis. I. Taxonomy, phylogeny, distribution and evolution of Crepis. .  University of California Publications in Botany. 21 1-197
  • 02 Babcock,  E. B.. (1974 b);  The genus Crepis. II. Systematic treatment.  University of California Publications in Botany. 22 199-1030
  • 03 Babcock,  E. B., and Cameron,  D. R.. (1934);  Chromosomes and phylogeny in Crepis. II. The relationships of one hundred eight species.  University of California Publications in Agricultural Sciences. 6 287-324
  • 04 Babcock,  E. B., and Jenkins,  J. A.. (1943);  Chromosomes and phylogeny in Crepis. III. The relationships of one hundred and thirteen species.  University of California Publications in Agricultural Sciences. 18 241-292
  • 05 Babcock,  E. B., and Navashin,  M. S.. (1930);  The genus Crepis. .  Bibliographia Genetica. 6 1-90
  • 06 Babcock,  E. B.,, Stebbins,  G. L.,, and Jenkins,  J. A.. (1942);  Genetic evolutionary processes in Crepis. .  American Naturalist. 76 337-363
  • 07 Berger,  R., and Greilhuber,  J.. (1991);  C-bands and chiasma distribution in Scilla siberica (Hyacinthaceae).  Genome. 34 179-189
  • 08 Cherepanov,  S. K.. (1964) Crepis L. Flora USSR, Vol. 29. Bobrov, E. G. and Tzvelev, N. N., eds. Leningrad; Nauka pp. 594-699
  • 09 Dimitrova,  D., and Greilhuber,  J.. (1999) Biosystematic study of the endemic taxa of section Macropodes Babc. of genus Crepis L. (Asteraceae) distributed in Bulgaria. First International Symposium on Protection of Natural Environment and Ehrami Karacam, 23 - 25 September 1999. Kutahya, Turkey pp. 700-705
  • 10 Dimitrova,  D., and Greilhuber,  J.. (2000);  Karyotype and DNA-content evolution in ten species of Crepis (Asteraceae) distributed in Bulgaria.  Botanical Journal of the Linnean Society. 132 281-297
  • 11 Dimitrova,  D.,, Ebert,  I.,, Greilhuber,  J.,, and Kozhuharov,  S.. (1999);  Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.l. (Asteraceae).  Plant Systematics and Evolution. 217 245-257
  • 12 Favarger,  C., and Contandriopoulos,  J.. (1961);  Essai sur l'endémisme.  Bulletin Societe Botanique Suisse. 71 384-408
  • 13 Favarger,  C., and Siljak-Yakovlev,  S.. (1986) A propos de la classification des taxons endémiques basée sur la cytotaxonomie et la cytogénétique. Colloque Internationale de Botanique Pyrénéenne, La Cabanasse (Pyrénées-Orientales), 3 - 5 Juillet pp. 287-303
  • 14 Greilhuber,  J.. (1977);  Nuclear DNA and heterochromatin contents in the Scilla hohenackeri group, S. persica, and Puschkinia scilloides (Liliaceae).  Plant Systematics and Evolution. 128 243-257
  • 15 Greilhuber,  J.. (1995) Chromosomes of the monocotyledons (general aspects). Monocotyledons: Systematics and Evolution. Rudall, P. J., Cribb, P. J., Cutler, D. F., and Humphries, C. J., eds. Kew; Royal Botanic Gardens pp. 379-414
  • 16 Greilhuber,  J., and Ehrendorfer,  F.. (1988);  Karyological approaches to plant taxonomy.  ISI Atlas of Science, Plants and Animals. 1 289-297
  • 17 Greilhuber,  J.,, Deumling,  B.,, and Speta,  F.. (1981);  Evolutionary aspects of chromosome banding, heterochromatin, satellite DNA, and genome size in Scilla (Liliaceae).  Berichte der Deutschen Botanischen Gesellschaft. 94 249-266
  • 18 Hollingshead,  L., and Babcock,  E. B.. (1930);  Chromosomes and phylogeny in Crepis. .  University of California Publications in Agricultural Science. 6 1-53
  • 19 Ikeda,  H.. (1988);  Karyomorphological studies on the genus Crepis with special reference to C-banding pattern. Journal of Science of the Hiroshima University, Series B., Division 2.  Botany. 22 65-117
  • 20 John,  B.. (1988) The biology of heterochromatin. Heterochromatin. Molecular and structural aspects. Verma, R. S., ed. Cambridge, New York; Cambridge University Press pp. 1-147
  • 21 Jones,  G. H.. (1978);  Giemsa C-banding of rye meiotic chromosomes and the nature of “terminal” chiasmata.  Chromosoma. 66 45-57
  • 22 Jones,  R. N., and Brown,  L. M.. (1976);  Chromosome evolution and DNA variation in Crepis. .  Heredity. 36 91-105
  • 23 Kamari,  G.. (1976) Cytotaxonomic study of the Crepis neglecta complex in Greece. University of Patras; Ph. D. Thesis
  • 24 Kamari,  G.. (1992);  Karyosystematic studies on three Crepis species (Asteraceae) endemic to Greece.  Plant Systematics and Evolution. 182 1-19
  • 25 Kubis,  S.,, Schmidt,  T.,, and Heslop-Harrison,  J. S. P.. (1998);  Repetitive DNA elements as a major component of plant genomes.  Annals of Botany. 82 (Supplement A) 45-55
  • 26 Levan,  A.,, Fredga,  K.,, and Sandberg,  A. A.. (1964);  Nomenclature for centromeric position on chromosomes.  Hereditas. 52 201-220
  • 27 Lima-de-Faria,  A.. (1973);  Equations defining the position of ribosomal cistrons in the eukaryotic chromosome.  Nature New Biology. 241 (109) 136-139
  • 28 Loidl,  J.. (1979);  C-band proximity of chiasmata and absence of terminalisation in Allium flavum (Liliaceae).  Chromosoma. 73 45-51
  • 29 Schwarzacher,  T.,, Ambros,  P.,, and Schweizer,  D.. (1980);  Application of Giemsa banding to orchid karyotype analysis.  Plant Systematics and Evolution. 134 293-297
  • 30 Sell,  P. D.,. (1976) Crepis L. Flora Europaea, Vol. 4. Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Webb, D. A., eds. Cambridge; Cambridge University Press pp. 344-357
  • 31 Siljak-Yakovlev,  S., and Cartier,  D.. (1979);  Utilisation de la coloration differentielle au Giemsa dans l'analyse des caryotypes de quatre Crepis. .  Revue de Cytologie et de Biologie Végétales - le Botaniste. 2 13-20
  • 32 Siljak-Yakovlev,  S., and Cartier,  D.. (1982);  Comparative analysis of C-banding karyotypes in Crepis praemorsa ssp. praemorsa and ssp. dinarica. .  Plant Systematics and Evolution. 141 85-90
  • 33 Siljak-Yakovlev,  S., and Cartier,  D.. (1986);  Heterochromatin patterns in some taxa of Crepis praemorsa complex.  Caryologia. 39 27-32
  • 34 Stebbins,  G. L.. (1971) Chromosomal evolution in higher plants. London; Edward Arnold Ltd.
  • 35 Velchev,  V., Kozhuharov,  S., and Anchev,  M. (eds.). (1992) Atlas of the endemic plants in Bulgaria. Sofia; Bulgarian Academy of Sciences pp. 23-24
  • 36 Watanabe,  K.,, Ito,  M.,, Yahara,  T.,, Sullivan,  V. I.,, Kawahara,  T.,, and Crawford,  D. J.. (1990);  Numerical analysis of karyotype diversity in the genus Eupatorium (Compositae, Eupatorieae).  Plant Systematics and Evolution. 170 215-228

D. Dimitrova

Institute of Botany
Bulgarian Academy of Sciences

Acad. G. Bonchev Street, bl. 23
1113 Sofia
Bulgaria

Email: desco@iph.bio.bas.bg

Section Editor: G. Gottsberger

    >