Synthesis 2024; 56(17): 2681-2686
DOI: 10.1055/s-0043-1774911
paper

Stereoselective Synthesis of Azobenzene-Based Glycomacrocycles

Jinbiao Jiao
,
Juan Xie


Abstract

Carbohydrate-based macrocyclic compounds are of particular interest because of their multifunctionality, their unique structural and physicochemical properties as well as their potential applications in chemistry, biology, and drug discovery. Introducing a molecular photoswitch into the skeleton of glycomacrocycles makes possible the reversible control of properties of the resulting photoswitchable glycomacrocycles by light illumination. Therefore, development of stereoselective synthesis of this class of glycomacrocycles is of great interest. Two new azobenzene-based glycomacrocycles have been synthesized through an intramolecular glycosylation approach. Excellent 1,2-cis stereoselectivity has been achieved for the mannosylation.

Supporting Information



Publication History

Received: 16 April 2024

Accepted after revision: 24 May 2024

Article published online:
11 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yudin AK. Chem. Sci. 2015; 6: 30
  • 2 Kingwell K. Nat. Rev. Drug Disc. 2023; 22: 771
  • 3 Jimenez DG, Poongavanam V, Kihlberg J. J. Med. Chem. 2023; 66: 5377
  • 4 Xie J, Bogliotti N. Chem. Rev. 2014; 114: 7678
  • 5 Xie J. Carbohydrate Chemistry: Chemical and Biological Approaches, Vol. 45. Rauter AP, Lindhorst TK, Queneau Y. Royal Society of Chemistry; Cambridge: 2021: 460-498
  • 6 Velema WA, Szymanski W, Feringa BL. J. Am. Chem. Soc. 2014; 136: 2178
  • 7 Hull K, Morstein J, Trauner D. Chem. Rev. 2018; 118: 10710
  • 8 Fuchter MJ. J. Med. Chem. 2020; 63: 11436
  • 9 Jerca FA, Jerca VV, Hoogenboom R. Nat. Rev. Chem. 2022; 6: 51
  • 10 Mukherjee A, Seyfried MD, Ravoo BJ. Angew. Chem. Int. Ed. 2023; 62: e202304437
  • 11 Crespi S, Simeth NA, König B. Nat. Rev. Chem. 2019; 3: 133
  • 12 Despras G, Hain J, Jaeschke S. Chem. Eur. J. 2017; 23: 10838
  • 13 Lin C, Maisonneuve S, Métivier R, Xie J. Chem. Eur. J. 2017; 23: 14996
  • 14 Hain J, Despras G. Chem. Commun. 2018; 54: 8563
  • 15 Lin C, Maisonneuve S, Theulier C, Xie J. Eur. J. Org. Chem. 2019; 1770
  • 16 Kim Y, Mafy N, Maisonneuve S, Lin C, Tamaoki N, Xie J. ACS Appl. Mater. Interfaces 2020; 12: 52146
  • 17 Lin C, Jiao J, Maisonneuve S, Mallétroit J, Xie J. Chem. Commun. 2020; 56: 3261
  • 18 Sokolowska P, Dabrowa K, Jarosz S. Org. Lett. 2021; 23: 2687
  • 19 Jiao J, Maisonneuve S, Xie J. J. Org. Chem. 2022; 87: 8534
  • 20 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 21 Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 22 Bock K, Pederson C. J. Chem. Soc., Perkin Trans. 2 1974; 293