Synthesis 2024; 56(17): 2731-2741
DOI: 10.1055/s-0043-1774910
paper

Efficient Synthesis of Esters by Cleavage of C–S and C–N Bonds via Alkylation and Activation of Thioamides

Jigarkumar K. Vankar
,
Jaydeepbhai P. Jadav
,
Guddeangadi N. Gururaja
The authors thank the Science and Engineering Research Board (SERB), Government of India, for a core research grant (SERB-EMR/ 2017/001531) and CSIR New Delhi, India, for the CSIR grant (CSIR-EMR-II No. 02(0315)/17/EMR-II). J.K.V. thanks DST-SERB for the project fellowship and Central University of Gujarat, Gandhinagar, for the fellowship. J.P.J. thanks Central University of Gujarat, Gandhinagar, for the fellowship.


Abstract

A mild and efficient reaction for synthesizing esters from thioamide precursors has been established. This method is accomplished in one pot under mild conditions. The process involves the alkylation and activation of inert thioamides, which leads to the cleavage of stable C–N and C–S bonds, eventually resulting in valuable esters with a broad range of substrates. The transformation can be easily carried out at room temperature using thioamide substrates, reactants, and activating agents. This protocol has been demonstrated by synthesizing important esters with applications.

Supporting Information



Publication History

Received: 11 April 2024

Accepted after revision: 23 May 2024

Article published online:
11 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications . Wiley-VCH; Weinheim: 2003: 1-303
    • 1b Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA, Nudelman A. Synth. Commun. 1998; 28: 471
  • 2 Sá AG. A, de Meneses AC, de Araújo PH. H, de Oliveira D. Trends Food Sci. Technol. 2017; 69: 95
  • 3 Sheu Y.-W, Tu C.-H. J. Chem. Eng. Data 2006; 51: 496
  • 4 Cheung CW, Ploeger ML, Hu X. Nat. Commun. 2017; 8: 14878
  • 5 Ren J.-W, Tong M.-N, Zhao Y.-F, Ni F. Org. Lett. 2021; 23: 7497
    • 6a Finney EE, Ogawa KA, Boydston AJ. J. Am. Chem. Soc. 2012; 134: 12377
    • 6b Green RA, Pletcher D, Leach SG, Brown RC. D. Org. Lett. 2015; 17: 3290
    • 7a Sarkar SD, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
    • 7b Maki BE, Scheidt KA. Org. Lett. 2008; 10: 4331
    • 7c Talukdar D, Sharma K, Bharadwaj SK, Thakur AJ. Synlett 2013; 24: 963
    • 7d Owston N, Nixon T, Parker A, Whittlesey M, Williams J. Synthesis 2009; 1578
    • 7e Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J. J. Org. Chem. 2013; 78: 9898
    • 7f Lerebours R, Wolf C. J. Am. Chem. Soc. 2006; 128: 13052
    • 7g Gopinath R, Patel BK. Org. Lett. 2000; 2: 577
    • 8a Toyao T, Rashed MN, Morita Y, Kamachi T, Siddiki SM. A. H, Ali MA, Touchy AS, Kon K, Maeno Z, Yoshizawa K, Shimizu K. ChemCatChem 2018; 11: 449
    • 8b Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 8c Weires NA, Caspi DD, Garg NK. ACS Catal. 2017; 7: 4381
    • 8d Rashed MN, Siddiki SM. A. H, Touchy AS, Jamil MA. R, Poly SS, Toyao T, Maeno Z, Shimizu K. Chem. Eur. J. 2019; 25: 10594
    • 8e Branchu YB, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 8f Mashima K, Nishii Y, Akiyama S, Kita Y. Synlett 2015; 26: 1831
    • 8g Nishii Y, Hirai T, Fernandez S, Knochel P, Mashima K. Eur. J. Org. Chem. 2017; 2017: 5010
    • 8h Nagae H, Hirai T, Kato D, Soma S, Akebi S, Mashima K. Chem. Sci. 2019; 10: 2860
    • 9a Gupta A, Vankar JK, Jadav JP, Gururaja GN. J. Org. Chem. 2022; 87: 2410
    • 9b Vankar JK, Gupta A, Jadav JP, Nanjegowda SH, Gururaja GN. Org. Biomol. Chem. 2021; 19: 2473
  • 10 Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Org. Biomol. Chem. 2022; 20: 5981
    • 11a Bickers DR, Calow P, Greim HA, Hanifin JM, Rogers AE, Saurat J.-H, Glenn Sipes I, Smith RL, Tagami H. Regul. Toxicol. Pharmacol. 2003; 37: 218
    • 11b Mostafiz MM, Hassan E, Lee K.-Y. Agriculture 2022; 12: 378
    • 11c Feng Y, Chen J, Zhang A. Sci. Rep. 2018; 8: 7902
  • 12 Ali HM. Separations 2022; 9: 93
  • 13 Reilly MK, King RP, Wagner AJ, King SM. J. Chem. Educ. 2014; 91: 1706
  • 14 Leibler IN.-M, Gandhi SS, Tekle-Smith MA, Doyle AG. J. Am. Chem. Soc. 2023; 145: 9928
  • 15 Zhou Z, Pi S, Wang R. ChemistrySelect 2022; 7: e202200842
  • 16 Yang M, Li Y, Li H, Jiang L, Wang Z, Jin L, Wang H, Zhou R. Eur. J. Org. Chem. 2022; 2022: e202200212
  • 17 Delany EG, Fagan C.-L, Gundala S, Mari A, Broja T, Zeitler K, Connon SJ. Chem. Commun. 2013; 49: 6510
  • 18 Mali G, Verma I, Arora H, Rajput A, Kumar A, Erande RD. J. Org. Chem. 2023; 88: 5696
  • 19 Powell AB, Stahl SS. Org. Lett. 2013; 15: 5072
  • 20 Guo W, Liu J, Li X, Chen X, Wang T, Xin L. Synthesis 2023; 55: 2993
  • 21 Wang J, Jiang F, Tao C, Yu H, Ruhlmann L, Wei Y. Green Chem. 2021; 23: 2652
  • 22 Pietrzak M, Jędrzejewska B, Mądrzejewska D, Bajorek A. Org. Prep. Proced. Int. 2017; 49: 45
  • 23 Chen C, Yuan T, Lan P, White LV, Chen J, Banwell MG. Eur. J. Org. Chem. 2023; 2023: e202300003
  • 24 Zhou H, Mukherjee P, Liu R, Evrard E, Wang D, Humphrey JM, Butler TW, Hoth LR, Sperry JB, Sakata SK, Helal CJ, Ende CW. A. Org. Lett. 2018; 20: 812
  • 25 Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 5943
  • 26 Ogawa H, Yang Z.-K, Minami H, Kojima K, Saito T, Wang C, Uchiyama M. ACS Catal. 2017; 7: 3988
  • 27 Kim JH, Park H, Chung YK. RSC Adv. 2017; 7: 190
  • 28 Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
  • 29 Huang X, Li X, Zou M, Song S, Tang C, Yuan Y, Jiao N. J. Am. Chem. Soc. 2014; 136: 14858
  • 30 Crosignani S, Gonzalez J, Swinnen D. Org. Lett. 2004; 6: 4579
  • 31 Shi L, Zheng L, Ning S, Gao Q, Sun C, Zhang Z, Xiang J. Org. Lett. 2022; 24: 5782
  • 32 Dai M.-S, Zheng Z.-M, Zhang S.-L. Org. Biomol. Chem. 2023; 21: 935
  • 33 Gaspa S, Farina A, Tilocca M, Porcheddu A, Pisano L, Carraro M, Azzena U, Luca LD. J. Org. Chem. 2020; 85: 11679