Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(13): 1831-1834
DOI: 10.1055/s-0034-1380428
DOI: 10.1055/s-0034-1380428
letter
Manganese(II)-Catalyzed Esterification of N-β-Hydroxyethylamides
Further Information
Publication History
Received: 29 April 2015
Accepted after revision: 18 May 2015
Publication Date:
26 June 2015 (online)
Abstract
A catalyst system of manganese with 2,2-bipyridine for amide alcoholysis of N-β-hydroxyethylamides is described. This protocol enabled selective cleavage of the amide bond through a mechanism involving sequential N,O-acyl rearrangement and transesterification.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380428.
- Supporting Information
-
References and Notes
- 1a Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
-
1b Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 1c Li Y, Wu Y, Li G.-S, Wang X.-S. Adv. Synth. Catal. 2014; 356: 1412
- 1d Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 1e Dastbaravardeh N, Christakakou M, Haider M, Schnürch M. Synthesis 2014; 46: 1421
- 2a Haag B, Mosrin M, Ila H, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
- 2b Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
- 2c Harford PJ, Peel AJ, Chevallier F, Takita R, Mongin F, Uchiyama M, Wheatley AE. H. Dalton Trans. 2014; 43: 14181
- 3a Anelli PL, Brocchetta M, Palano D, Visigalli M. Tetrahedron Lett. 1997; 38: 2367
- 3b Charette AB, Chua P. Synlett 1998; 163
- 4a Nanjappan P, Czarnik AW. J. Am. Chem. Soc. 1987; 109: 1826
- 4b Kawaguchi S, Kajikawa T, Kaneko M, Koshimizu T, Araki K. Bull. Chem. Soc. Jpn. 1999; 72: 2729
- 4c Berreau LM, Makowsak-Grzyska MM, Arif AM. Inorg. Chem. 2000; 39: 4390
- 4d Kawaguchi S, Araki K. Inorg. Chim. Acta 2005; 358: 947
- 4e Szajna-Fuller E, Ingle GK, Watkins RW, Arif AM, Berreau LM. Inorg. Chem. 2007; 46: 2353
- 4f Bröhmer MC, Bannwarth W. Eur. J. Org. Chem. 2008; 4412
- 4g Bröhmer MC, Mundinger S, Bräse S, Bannwarth W. Angew. Chem. Int. Ed. 2011; 50: 6175
- 4h Raycroft MA. R, Maxwell CI, Oldham RA. A, Andrea AS, Neverov AA, Brown RS. Inorg. Chem. 2012; 51: 10325
- 5a Yamada S. Angew. Chem., Int. Ed. Engl. 1993; 32: 1083
- 5b Yamada S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1113
- 5c Yamada S. J. Org. Chem. 1996; 61: 941
- 5d Yamada S. J. Org. Chem. 1996; 61: 5932
- 5e Kirby AJ, Komarov IV, Wothers PD, Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
- 5f Hutchby M, Houlden CE, Haddow MF, Tyler SN. G, Loyd-Jones GC, Booker-Milburn GC. Angew. Chem. Int. Ed. 2012; 51: 548
- 5g Aubé J. Angew. Chem. Int. Ed. 2012; 51: 3063
- 6a Fisher LE, Caroon JM, Stabler SR, Lundberg S, Zaidi S, Sorensen CM, Sparacino ML, Muchows JM. Can. J. Chem. 1994; 72: 142
- 6b Kita Y, Nishii Y, Onoue A, Mashima K. Adv. Synth. Catal. 2013; 355: 3391
- 6c Siddiki SM. A. H, Touchy AS, Tamura M, Shimizu K.-I. RSC Adv. 2014; 4: 35803
- 6d Atkinson BN, Williams JM. J. Tetrahedron Lett. 2014; 55: 6935
- 7 Kita Y, Nishii Y, Higuchi T, Mashima K. Angew. Chem. Int. Ed. 2012; 51: 5723
- 8 Hayashi Y, Santoro S, Azuma Y, Himo F, Ohshima T, Mashima K. J. Am. Chem. Soc. 2013; 135: 6192
- 9a Iwasaki T, Maegawa Y, Hayashi Y, Ohshima T, Mashima K. J. Am. Chem. Soc. 2008; 130: 2944
- 9b Iwasaki T, Maegawa Y, Hayashi Y, Ohshima T, Mashima K. J. Org. Chem. 2008; 73: 5147
- 9c Iwasaki T, Maegawa Y, Hayashi Y, Ohshima T, Mashima K. Synlett 2009; 1659
- 9d Iwasaki T, Agura K, Maegawa Y, Hayashi Y, Ohshima T, Mashima K. Chem. Eur. J. 2010; 16: 11567
- 9e Maegawa Y, Ohshima T, Hayashi Y, Agura K, Iwassaki T, Mashima K. ACS Catal. 2011; 1: 1178
- 9f Maegawa Y, Agura K, Hayashi Y, Ohshima T, Mashima K. Synlett 2012; 23: 137
- 10 Hatano M, Furuya Y, Shimmura T, Moriyama K, Kamiya S, Maki T, Ishihara K. Org. Lett. 2011; 13: 426
- 11 Otera J, Dan-oh N, Nozaki H. J. Org. Chem. 1991; 56: 5307
- 12 Albela B, Corbella M, Ribas J, Castro I, Sletten J, Stoeckli-Evans H. Inorg. Chem. 1998; 37: 788
- 13 General Procedure for the Mn-Catalyzed Esterification (Table 2) An oven-dried Schlenk tube was equipped with Mn(acac)2 (0.05 mmol), amide (1.0 mmol), 2,2′-bipyridine (0.05 mmol), diethyl carbonate (2.0 mmol), and n-BuOH (1.0 mL) and the resulting mixture was refluxed for periodic time under an argon atmosphere. After cooling to r.t., yields were determined by the following procedures: 1. Isolated yield; after removal of solvents in vacuo, the product was then isolated with column chromatography. 2. NMR yield; metal salts were removed by filtration through silica gel eluting with EtOAc, and solvents were removed in vacuo. Yield was determined by 1H NMR analysis using phenanthrene as an internal standard. 3. GC yield; metal salts were removed by filtration through silica gel eluting with EtOAc, and yield was determined by GC analysis using dodecane as an internal standard. Butyl Cyclohexanecarboxylate (2b) Purified by flash column chromatography (silica gel, hexane–EtOAc = 20:1); colorless oil. 1H NMR (400 MHz, CDCl3, 30 °C): δ = 0.91 (t, J = 7.4 Hz, 3 H, CH3), 1.12–1.66 (m, 10 H, methylene), 1.70–1.80 (m, 2 H, methylene), 1.80–1.90 (m, 2 H, methylene), 2.27 (tt, J = 3.7, 11.2 Hz, 1 H, COCH), 4.04 (t, J = 6.6 Hz, 2 H, OCH2). 13C NMR (100 MHz, CDCl3, 30 °C): δ = 13.6, 19.1, 25.4, 25.8, 29.0, 30.7, 43.3, 63.9, 176.1. Butyl 2-(Trifluoromethyl)benzoate (2j) Purified by flash column chromatography (silica gel, hexane–EtOAc = 20:1); colorless oil. IR (neat NaCl): ν = 2964 (m), 2876 (w), 1736 (s), 1316 (s), 1292 (s), 1264 (s), 1168 (s), 1144 (s) cm–1. 1H NMR (400 MHz, CDCl3, 30 °C): δ = 0.96 (t, J = 7.5 Hz, 3 H, CH3), 1.40–1.50 (m, 2 H, CH 2CH3), 1.70–1.80 (m, 2 H, OCH2CH 2), 4.34 (t, J = 6.7 Hz, 2 H, OCH2), 7.50–7.60 (m, 2 H, Ar), 7.70–7.80 (m, 2 H, Ar). 13C NMR (100 MHz, CDCl3, 30 °C): δ = 13.6, 19.0, 30.4, 65.9, 123.4 (q, J C–F = 272 Hz), 126.6 (q, J C–F = 5 Hz), 128.7 (q, J C–F = 32 Hz), 130.1, 130.9, 131.6, 131.7, 167.0. 19F NMR (376 MHz, CDCl3, 30 °C): δ = –58.1. MS–FAB+: m/z (relative intensity) = 247 (20) [M + H]+, 173 (40), 57 (100). HRMS–FAB+: m/z calcd for C10H11F3NO2: 247.0948 [M + H]+; found: 247.0946. For other compounds, see Supporting Information.
- 14a Gothelf KV, Hazell RG, Jørgensen KA. J. Org. Chem. 1996; 61: 346
- 14b Evans DA, Coleman PJ, Dias LC. Angew. Chem., Int. Ed. Engl. 1997; 36: 2737
- 14c Fukuzawa S.-I, Hongo Y. Tetrahedron Lett. 1998; 39: 3521
- 14d Orita A, Nagano Y, Hirano J, Otera J. Synlett 2001; 637
- 14e Kanomata N, Maruyama S, Tomonoa K, Anada S. Tetrahedron Lett. 2003; 44: 3599
- 14f Magnier-Bouvier C, Reboule I, Gil R, Collin J. Synlett 2008; 1211
- 15 Yashiro M, Sonobe Y, Yamamura A, Takarada T, Komiyama M, Fujii Y. Org. Biomol. Chem. 2003; 1: 629
- 16 Procedure of a Crossover Experiment (Scheme 2) An oven-dried Schlenk tube was equipped with Mn(acac)2 (0.05 mmol), N-(2-hydroxyethyl)benzamide (1d) (1.0 mmol), N-hexyl-3-phenylpropionamide (4, 1.0 mmol), 2,2′-bipyridine (0.05 mmol), diethyl carbonate (2.0 mmol), and n-BuOH (1.0 mL), and the resulting mixture was refluxed for 18 h under an argon atmosphere. After cooling to r.t., metal salts were removed by filtration through silica gel eluting with EtOAc, and solvents were removed in vacuo. Yield and conversion were determined by 1H NMR analysis using phenanthrene as an internal standard.
For recent reviews, see:
For recent reviews, see:
For examples using activated acyl compounds, see:
For directing-group-assisted reactions, see:
For reactions of twisted amides, see:
For examples on the catalytic esterification, see:
For examples of the oxazolidone auxiliary alcoholysis, see: