Semin Respir Crit Care Med 2023; 44(02): 269-286
DOI: 10.1055/s-0042-1758732
Review Article

Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future

Christina S. Thornton
1   Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
,
Michael D. Parkins
1   Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
2   Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
› Author Affiliations

Abstract

Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.



Publication History

Article published online:
09 January 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. Lancet 2021; 397 (10290): 2195-2211
  • 2 Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168 (08) 918-951
  • 3 Fuchs HJ, Borowitz DS, Christiansen DH. et al; The Pulmozyme Study Group. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 1994; 331 (10) 637-642
  • 4 Sanders DB, Bittner RC, Rosenfeld M, Hoffman LR, Redding GJ, Goss CH. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Respir Crit Care Med 2010; 182 (05) 627-632
  • 5 Waters V, Stanojevic S, Atenafu EG. et al. Effect of pulmonary exacerbations on long-term lung function decline in cystic fibrosis. Eur Respir J 2012; 40 (01) 61-66
  • 6 Saiman L. Improving outcomes of infections in cystic fibrosis in the era of CFTR modulator therapy. Pediatr Pulmonol 2019; 54 (Suppl. 03) S18-S26
  • 7 Bergeron C, Cantin AM. Cystic fibrosis: pathophysiology of lung disease. Semin Respir Crit Care Med 2019; 40 (06) 715-726
  • 8 O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2017; 364 (15) fnx128
  • 9 Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, Friman VP. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J 2022; 16 (03) 812-821
  • 10 Sibley CD, Rabin H, Surette MG. Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol 2006; 1 (01) 53-61
  • 11 Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15 (02) 194-222
  • 12 Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996; 85 (02) 229-236
  • 13 Hoppe JE, Sagel SD. Shifting landscape of airway infection in early cystic fibrosis. Am J Respir Crit Care Med 2019; 200 (05) 528-529
  • 14 Bevivino A, Bacci G, Drevinek P, Nelson MT, Hoffman L, Mengoni A. Deciphering the ecology of cystic fibrosis bacterial communities: towards systems-level integration. Trends Mol Med 2019; 25 (12) 1110-1122
  • 15 Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010; 23 (02) 299-323
  • 16 Millar FA, Simmonds NJ, Hodson ME. Trends in pathogens colonising the respiratory tract of adult patients with cystic fibrosis, 1985-2005. J Cyst Fibros 2009; 8 (06) 386-391
  • 17 Zhao J, Schloss PD, Kalikin LM. et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A 2012; 109 (15) 5809-5814
  • 18 Hurley MN. Staphylococcus aureus in cystic fibrosis: problem bug or an innocent bystander?. Breathe (Sheff) 2018; 14 (02) 87-90
  • 19 Goss CH, Muhlebach MS. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 2011; 10 (05) 298-306
  • 20 Malhotra S, Hayes Jr. D, Wozniak DJ. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 2019; 32 (03) e00138-18
  • 21 Rossi E, La Rosa R, Bartell JA. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19 (05) 331-342
  • 22 Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia infections in cystic fibrosis patients: drug resistance and therapeutic approaches. Front Microbiol 2017; 8: 1592
  • 23 Lipuma JJ. Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 2005; 11 (06) 528-533
  • 24 Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and cystic fibrosis—a close relationship. What can we learn from sequencing studies?. Pathogens 2021; 10 (09) 1177
  • 25 Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol 2018; 53 (S3): S64-S74
  • 26 Høiby N. Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 2002; 1 (04) 249-254
  • 27 Waters EM, Rowe SE, O'Gara JP, Conlon BP. Convergence of Staphylococcus aureus persister and biofilm research: can biofilms Be defined as communities of adherent persister cells?. PLoS Pathog 2016; 12 (12) e1006012
  • 28 Gangell C, Gard S, Douglas T. et al; AREST CF. Inflammatory responses to individual microorganisms in the lungs of children with cystic fibrosis. Clin Infect Dis 2011; 53 (05) 425-432
  • 29 Sagel SD, Gibson RL, Emerson J. et al; Inhaled Tobramycin in Young Children Study Group, Cystic Fibrosis Foundation Therapeutics Development Network. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. J Pediatr 2009; 154 (02) 183-188
  • 30 Kerem E, Viviani L, Zolin A. et al; ECFS Patient Registry Steering Group. Factors associated with FEV1 decline in cystic fibrosis: analysis of the ECFS patient registry. Eur Respir J 2014; 43 (01) 125-133
  • 31 Zemanick ET, Hoffman LR. Cystic fibrosis: microbiology and host response. Pediatr Clin North Am 2016; 63 (04) 617-636
  • 32 Stutman HR, Lieberman JM, Nussbaum E, Marks MI. Antibiotic prophylaxis in infants and young children with cystic fibrosis: a randomized controlled trial. J Pediatr 2002; 140 (03) 299-305
  • 33 Smyth AR, Rosenfeld M. Prophylactic anti-staphylococcal antibiotics for cystic fibrosis. Cochrane Database Syst Rev 2017; 4: CD001912
  • 34 Hurley MN, Fogarty A, McKeever TM, Goss CH, Rosenfeld M, Smyth AR. Early respiratory bacterial detection and antistaphylococcal antibiotic prophylaxis in young children with cystic fibrosis. Ann Am Thorac Soc 2018; 15 (01) 42-48
  • 35 Westphal C, Görlich D, Kampmeier S. et al; Staphylococcal CF Study Group. Antibiotic treatment and age are associated with Staphylococcus aureus carriage profiles during persistence in the airways of cystic fibrosis patients. Front Microbiol 2020; 11: 230
  • 36 Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997; 10 (04) 781-791
  • 37 Dasenbrook EC, Merlo CA, Diener-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med 2008; 178 (08) 814-821
  • 38 Esposito S, Pennoni G, Mencarini V, Palladino N, Peccini L, Principi N. Antimicrobial treatment of Staphylococcus aureus in patients with cystic fibrosis. Front Pharmacol 2019; 10: 849
  • 39 Dasenbrook EC. Update on methicillin-resistant Staphylococcus aureus in cystic fibrosis. Curr Opin Pulm Med 2011; 17 (06) 437-441
  • 40 Wolter DJ, Onchiri FM, Emerson J. et al; SCVSA study group. Prevalence and clinical associations of Staphylococcus aureus small-colony variant respiratory infection in children with cystic fibrosis (SCVSA): a multicentre, observational study. Lancet Respir Med 2019; 7 (12) 1027-1038
  • 41 Yagci S, Hascelik G, Dogru D, Ozcelik U, Sener B. Prevalence and genetic diversity of Staphylococcus aureus small-colony variants in cystic fibrosis patients. Clin Microbiol Infect 2013; 19 (01) 77-84
  • 42 Besier S, Smaczny C, von Mallinckrodt C. et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 2007; 45 (01) 168-172
  • 43 Besier S, Ludwig A, Ohlsen K, Brade V, Wichelhaus TA. Molecular analysis of the thymidine-auxotrophic small colony variant phenotype of Staphylococcus aureus . Int J Med Microbiol 2007; 297 (04) 217-225
  • 44 Schneider M, Mühlemann K, Droz S, Couzinet S, Casaulta C, Zimmerli S. Clinical characteristics associated with isolation of small-colony variants of Staphylococcus aureus and Pseudomonas aeruginosa from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 2008; 46 (05) 1832-1834
  • 45 Wolter DJ, Emerson JC, McNamara S. et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 2013; 57 (03) 384-391
  • 46 Junge S, Görlich D, den Reijer M. et al. Factors associated with worse lung function in cystic fibrosis patients with persistent Staphylococcus aureus . PLoS One 2016; 11 (11) e0166220
  • 47 Ratjen F, Comes G, Paul K, Posselt HG, Wagner TO, Harms K. German Board of the European Registry for Cystic Fibrosis (ERCF). Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr Pulmonol 2001; 31 (01) 13-16
  • 48 Mogayzel Jr. PJ, Naureckas ET, Robinson KA. et al; Pulmonary Clinical Practice Guidelines Committee. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2013; 187 (07) 680-689
  • 49 Muhlebach MS, Beckett V, Popowitch E. et al; STAR-too study team. Microbiological efficacy of early MRSA treatment in cystic fibrosis in a randomised controlled trial. Thorax 2017; 72 (04) 318-326
  • 50 Neri S, Campana S, Dolce D. et al. Early antibiotic treatment for MRSA eradication in cystic fibrosis patients: a multicenter RCT. Pediatr Pulmonol 2016; 51: 309
  • 51 Jennings MT, Boyle MP, Weaver D, Callahan KA, Dasenbrook EC. Eradication strategy for persistent methicillin-resistant Staphylococcus aureus infection in individuals with cystic fibrosis—the PMEP trial: study protocol for a randomized controlled trial. Trials 2014; 15: 223
  • 52 Dezube R, Jennings MT, Rykiel M. et al. Eradication of persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. J Cyst Fibros 2019; 18 (03) 357-363
  • 53 Loeb MB, Main C, Eady A, Walker-Dilks C. Antimicrobial drugs for treating methicillin-resistant Staphylococcus aureus colonization. Cochrane Database Syst Rev 2003; (04) CD003340
  • 54 Dolce D, Neri S, Grisotto L. et al. Methicillin-resistant Staphylococcus aureus eradication in cystic fibrosis patients: a randomized multicenter study. PLoS One 2019; 14 (03) e0213497
  • 55 Miall LS, McGinley NT, Brownlee KG, Conway SP. Methicillin resistant Staphylococcus aureus (MRSA) infection in cystic fibrosis. Arch Dis Child 2001; 84 (02) 160-162
  • 56 Rosenfeld M, Gibson RL, McNamara S. et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 2001; 32 (05) 356-366
  • 57 Saliu F, Rizzo G, Bragonzi A. et al. Chronic infection by nontypeable Haemophilus influenzae fuels airway inflammation. ERJ Open Res 2021; 7 (01) 00614-2020
  • 58 Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry 2019 Annual Data Report. Bethesda, MD: Cystic Fibrosis Foundation; 2020
  • 59 Allen JL, Panitch H, Rubenstein R. Cystic Fibrosis. Lung Biology in Health and Diseases. Vol. 242. New York, NY: Informa Healthcare; 2010: 242
  • 60 Murphy TF, Bakaletz LO, Smeesters PR. Microbial interactions in the respiratory tract. Pediatr Infect Dis J 2009; 28 (10, suppl): S121-S126
  • 61 Román F, Cantón R, Pérez-Vázquez M, Baquero F, Campos J. Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J Clin Microbiol 2004; 42 (04) 1450-1459
  • 62 Watson Jr. ME, Burns JL, Smith AL. Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology (Reading) 2004; 150 (pt. 9): 2947-2958
  • 63 Ebbing R, Robertson CF, Robinson PJ. Haemophilus influenzae and Haemophilus parainfluenza in cystic fibrosis: 15 years experience. J Med Microbiol Diagn 2015; S5 (004) DOI: 10.4172/2161-0703.S5-004.
  • 64 Frayman KB, Armstrong DS, Carzino R. et al. The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis. Thorax 2017; 72 (12) 1104-1112
  • 65 Manos J. Current and emerging therapies to combat cystic fibrosis lung infections. Microorganisms 2021; 9 (09) 1874
  • 66 Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018; 31 (04) e00019-18
  • 67 Cheng K, Smyth RL, Govan JR. et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996; 348 (9028): 639-642
  • 68 Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 2002; 3 (02) 128-134
  • 69 Pritt B, O'Brien L, Winn W. Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol 2007; 128 (01) 32-34
  • 70 Folkesson A, Jelsbak L, Yang L. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10 (12) 841-851
  • 71 Rosenfeld M, Faino AV, Onchiri F. et al. Comparing encounter-based and annualized chronic Pseudomonas infection definitions in cystic fibrosis. J Cyst Fibros 2022; 21 (01) 40-44
  • 72 Lee TW, Brownlee KG, Conway SP, Denton M, Littlewood JM. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J Cyst Fibros 2003; 2 (01) 29-34
  • 73 Kerem E, Corey M, Gold R, Levison H. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa . J Pediatr 1990; 116 (05) 714-719
  • 74 Konstan MW, Morgan WJ, Butler SM. et al; Scientific Advisory Group and the Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007; 151 (02) 134-139 , 139.e1
  • 75 Navarro J, Rainisio M, Harms HK. et al; European Epidemiologic Registry of Cystic Fibrosis. Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. Eur Respir J 2001; 18 (02) 298-305
  • 76 Kosorok MR, Zeng L, West SE. et al. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 2001; 32 (04) 277-287
  • 77 Nixon GM, Armstrong DS, Carzino R. et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 2001; 138 (05) 699-704
  • 78 Sawicki GS, Rasouliyan L, McMullen AH. et al. Longitudinal assessment of health-related quality of life in an observational cohort of patients with cystic fibrosis. Pediatr Pulmonol 2011; 46 (01) 36-44
  • 79 West SE, Zeng L, Lee BL. et al. Respiratory infections with Pseudomonas aeruginosa in children with cystic fibrosis: early detection by serology and assessment of risk factors. JAMA 2002; 287 (22) 2958-2967
  • 80 Pamukcu A, Bush A, Buchdahl R. Effects of Pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol 1995; 19 (01) 10-15
  • 81 Courtney JM, Bradley J, Mccaughan J. et al. Predictors of mortality in adults with cystic fibrosis. Pediatr Pulmonol 2007; 42 (06) 525-532
  • 82 Demko CA, Byard PJ, Davis PB. Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. J Clin Epidemiol 1995; 48 (08) 1041-1049
  • 83 Hudson VL, Wielinski CL, Regelmann WE. Prognostic implications of initial oropharyngeal bacterial flora in patients with cystic fibrosis diagnosed before the age of two years. J Pediatr 1993; 122 (06) 854-860
  • 84 Somayaji R, Lam JC, Surette MG. et al. Long-term clinical outcomes of ‘Prairie Epidemic Strain’ Pseudomonas aeruginosa infection in adults with cystic fibrosis. Thorax 2017; 72 (04) 333-339
  • 85 Saiman L, Siegel J. Infection control in cystic fibrosis. Clin Microbiol Rev 2004; 17 (01) 57-71
  • 86 Jones AM. Eradication therapy for early Pseudomonas aeruginosa infection in CF: many questions still unanswered. Eur Respir J 2005; 26 (03) 373-375
  • 87 Ratjen F, Munck A, Kho P, Angyalosi G. ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 2010; 65 (04) 286-291
  • 88 Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N. et al; Early Pseudomonas Infection Control (EPIC) Investigators. Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med 2011; 165 (09) 847-856
  • 89 Tiddens HA, De Boeck K, Clancy JP. et al; ALPINE study investigators. Open label study of inhaled aztreonam for Pseudomonas eradication in children with cystic fibrosis: the ALPINE study. J Cyst Fibros 2015; 14 (01) 111-119
  • 90 Mogayzel Jr. PJ, Naureckas ET, Robinson KA. et al; Cystic Fibrosis Foundation Pulmonary Clinical Practice Guidelines Committee. Cystic Fibrosis Foundation pulmonary guideline. pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc 2014; 11 (10) 1640-1650
  • 91 Langton Hewer SC, Smyth AR, Brown M. et al. Intravenous or oral antibiotic treatment in adults and children with cystic fibrosis and Pseudomonas aeruginosa infection: the TORPEDO-CF RCT. Health Technol Assess 2021; 25 (65) 1-128
  • 92 Green HD, Jones AM. Managing pulmonary infection in adults with cystic fibrosis: adult cystic fibrosis series. Chest 2022; 162 (01) 66-75
  • 93 Blanchard AC, Horton E, Stanojevic S, Taylor L, Waters V, Ratjen F. Effectiveness of a stepwise Pseudomonas aeruginosa eradication protocol in children with cystic fibrosis. J Cyst Fibros 2017; 16 (03) 395-400
  • 94 Mayer-Hamblett N, Kloster M, Rosenfeld M. et al. Impact of sustained eradication of new Pseudomonas aeruginosa infection on long-term outcomes in cystic fibrosis. Clin Infect Dis 2015; 61 (05) 707-715
  • 95 Somayaji R, Parkins MD, Shah A. et al; Antimicrobial Resistance in Cystic Fibrosis InternationalWorking Group. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros 2019; 18 (02) 236-243
  • 96 Castellani C, Duff AJA, Bell SC. et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018; 17 (02) 153-178
  • 97 Flume PA, Mogayzel Jr. PJ, Robinson KA. et al; Clinical Practice Guidelines for Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 2009; 180 (09) 802-808
  • 98 Flume PA, O'Sullivan BP, Robinson KA. et al; Cystic Fibrosis Foundation, Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2007; 176 (10) 957-969
  • 99 Zlosnik JEA, Henry DA, Hird TJ. et al. Epidemiology of Burkholderia infections in people with cystic fibrosis in Canada between 2000 and 2017. Ann Am Thorac Soc 2020; 17 (12) 1549-1557
  • 100 Zlosnik JE, Zhou G, Brant R. et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience. Ann Am Thorac Soc 2015; 12 (01) 70-78
  • 101 Canada CF. Canadian Cystic Fibrosis Patient Data Registry Report. 2009: 2-8
  • 102 Govan JR, Brown PH, Maddison J. et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342 (8862): 15-19
  • 103 LiPuma JJ, Dasen SE, Nielson DW, Stern RC, Stull TL. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 336 (8723): 1094-1096[pii]
  • 104 LiPuma JJ, Mortensen JE, Dasen SE. et al. Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 1988; 113 (05) 859-862
  • 105 Crull MR, Somayaji R, Ramos KJ. et al. Changing rates of chronic Pseudomonas aeruginosa infections in cystic fibrosis: a population-based cohort study. Clin Infect Dis 2018; 67 (07) 1089-1095
  • 106 Gilligan PH. Infections in patients with cystic fibrosis: diagnostic microbiology update. Clin Lab Med 2014; 34 (02) 197-217
  • 107 Amin R, Jahnke N, Waters V. Antibiotic treatment for Stenotrophomonas maltophilia in people with cystic fibrosis. Cochrane Database Syst Rev 2020; 3: CD009249
  • 108 Goss CH, Mayer-Hamblett N, Aitken ML, Rubenfeld GD, Ramsey BW. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 2004; 59 (11) 955-959
  • 109 Berdah L, Taytard J, Leyronnas S, Clement A, Boelle PY, Corvol H. Stenotrophomonas maltophilia: a marker of lung disease severity. Pediatr Pulmonol 2018; 53 (04) 426-430
  • 110 Goss CH, Otto K, Aitken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med 2002; 166 (03) 356-361
  • 111 Waters V, Yau Y, Prasad S. et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 2011; 183 (05) 635-640
  • 112 Waters V, Atenafu EG, Lu A, Yau Y, Tullis E, Ratjen F. Chronic Stenotrophomonas maltophilia infection and mortality or lung transplantation in cystic fibrosis patients. J Cyst Fibros 2013; 12 (05) 482-486
  • 113 Barsky EE, Williams KA, Priebe GP, Sawicki GS. Incident Stenotrophomonas maltophilia infection and lung function decline in cystic fibrosis. Pediatr Pulmonol 2017; 52 (10) 1276-1282
  • 114 Lambiase A, Catania MR, Del Pezzo M. et al. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2011; 30 (08) 973-980
  • 115 Tetart M, Wallet F, Kyheng M. et al. Impact of Achromobacter xylosoxidans isolation on the respiratory function of adult patients with cystic fibrosis. ERJ Open Res 2019; 5 (04) 00051-2019
  • 116 Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 2015; 14 (03) 293-304
  • 117 Edwards BD, Greysson-Wong J, Somayaji R. et al. Prevalence and outcomes of Achromobacter species infections in adults with cystic fibrosis: a North American cohort study. J Clin Microbiol 2017; 55 (07) 2074-2085
  • 118 Cabak A, Hovold G, Petersson AC, Ramstedt M, Påhlman LI. Activity of airway antimicrobial peptides against cystic fibrosis pathogens. Pathog Dis 2020; 78 (07) ftaa048
  • 119 De Baets F, Schelstraete P, Van Daele S, Haerynck F, Vaneechoutte M. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 2007; 6 (01) 75-78
  • 120 Recio R, Brañas P, Martínez MT, Chaves F, Orellana MA. Effect of respiratory Achromobacter spp. infection on pulmonary function in patients with cystic fibrosis. J Med Microbiol 2018; 67 (07) 952-956
  • 121 Hansen CR, Pressler T, Nielsen KG, Jensen PO, Bjarnsholt T, Høiby N. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 2010; 9 (01) 51-58
  • 122 Sunman B, Emiralioglu N, Hazirolan G. et al. Impact of Achromobacter spp. isolation on clinical outcomes in children with cystic fibrosis. Pediatr Pulmonol 2022; 57 (03) 658-666
  • 123 Wang M, Ridderberg W, Hansen CR. et al. Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. J Cyst Fibros 2013; 12 (06) 638-643
  • 124 Zhanel GG, Golden AR, Zelenitsky S. et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 2019; 79 (03) 271-289
  • 125 Warner NC, Bartelt LA, Lachiewicz AM. et al. Cefiderocol for the treatment of adult and pediatric patients with cystic fibrosis and Achromobacter xylosoxidans infections. Clin Infect Dis 2021; 73 (07) e1754-e1757
  • 126 Gainey AB, Burch AK, Brownstein MJ. et al. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr Pulmonol 2020; 55 (11) 2990-2994
  • 127 Edwards BD, Somayaji R, Greysson-Wong J. et al. Clinical outcomes associated with Escherichia coli infections in adults with cystic fibrosis: a cohort study. Open Forum Infect Dis 2019; 7 (01) ofz476
  • 128 Hector A, Kirn T, Ralhan A. et al. Microbial colonization and lung function in adolescents with cystic fibrosis. J Cyst Fibros 2016; 15 (03) 340-349
  • 129 Hatziagorou E, Orenti A, Drevinek P, Kashirskaya N, Mei-Zahav M, De Boeck K. ECFSPR. Electronic address: ECFS-Patient.Registry@uz.kuleuven.ac.be, ECFSPR. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis-data from the European cystic fibrosis society patient registry. J Cyst Fibros 2020; 19 (03) 376-383
  • 130 Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004; 42 (11) 5176-5183
  • 131 Harris JK, De Groote MA, Sagel SD. et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A 2007; 104 (51) 20529-20533
  • 132 van der Gast CJ, Walker AW, Stressmann FA. et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 2011; 5 (05) 780-791
  • 133 Heirali A, Thornton C, Acosta N. et al. Sputum microbiota in adults with CF associates with response to inhaled tobramycin. Thorax 2020; 75 (12) 1058-1064
  • 134 Zemanick ET, Wagner BD, Robertson CE. et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017; 50 (05) 1700832
  • 135 Price KE, Hampton TH, Gifford AH. et al. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013; 1 (01) 27
  • 136 Acosta N, Whelan FJ, Somayaji R. et al. The evolving cystic fibrosis microbiome: a comparative cohort study spanning 16 years. Ann Am Thorac Soc 2017; 14 (08) 1288-1297
  • 137 Hahn A, Whiteson K, Davis TJ. et al. Longitudinal associations of the cystic fibrosis airway microbiome and volatile metabolites: a case study. Front Cell Infect Microbiol 2020; 10: 174
  • 138 Whelan FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, Surette MG. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS One 2017; 12 (03) e0172811
  • 139 Raghuvanshi R, Vasco K, Vázquez-Baeza Y. et al. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems 2020; 5 (03) e00292-20
  • 140 Caverly LJ, Lu J, Carmody LA. et al. Measures of cystic fibrosis airway microbiota during periods of clinical stability. Ann Am Thorac Soc 2019; 16 (12) 1534-1542
  • 141 Acosta N, Thornton CS, Surette MG. et al. Azithromycin and the microbiota of cystic fibrosis sputum. BMC Microbiol 2021; 21 (01) 96
  • 142 Carmody LA, Zhao J, Kalikin LM. et al. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015; 3: 12
  • 143 Syed SA, Whelan FJ, Waddell B, Rabin HR, Parkins MD, Surette MG. Reemergence of lower-airway microbiota in lung transplant patients with cystic fibrosis. Ann Am Thorac Soc 2016; 13 (12) 2132-2142
  • 144 Feigelman R, Kahlert CR, Baty F. et al. Sputum DNA sequencing in cystic fibrosis: non-invasive access to the lung microbiome and to pathogen details. Microbiome 2017; 5 (01) 20
  • 145 Coutinho CP, Dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011; 1: 12
  • 146 Cramer N, Wiehlmann L, Tümmler B. Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis. Int J Med Microbiol 2010; 300 (08) 526-533
  • 147 Carmody LA, Caverly LJ, Foster BK. et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One 2018; 13 (03) e0194060
  • 148 Carmody LA, Zhao J, Schloss PD. et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc 2013; 10 (03) 179-187
  • 149 Quinn RA, Whiteson K, Lim YW. et al. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J 2015; 9 (04) 1052
  • 150 Layeghifard M, Li H, Wang PW. et al. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019; 5 (01) 4
  • 151 Twomey KB, Alston M, An SQ. et al. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation. PLoS One 2013; 8 (12) e82432
  • 152 Smith DJ, Badrick AC, Zakrzewski M. et al. Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics. Eur Respir J 2014; 44 (04) 922-930
  • 153 Acosta N, Heirali A, Somayaji R. et al. Sputum microbiota is predictive of long-term clinical outcomes in young adults with cystic fibrosis. Thorax 2018; 73 (11) 1016-1025
  • 154 Coburn B, Wang PW, Caballero JD. et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 2015; 5: 10241
  • 155 Cuthbertson L, Walker AW, Oliver AE. et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020; 8 (01) 45
  • 156 Cuthbertson L, Rogers GB, Walker AW. et al. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME J 2016; 10 (05) 1081-1091
  • 157 Gannon AD, Darch SE. Same game, different players: emerging pathogens of the CF lung. MBio 2021; 12 (01) e01217-20
  • 158 Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. MBio 2015; 6 (04) e00767
  • 159 Worlitzsch D, Tarran R, Ulrich M. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109 (03) 317-325
  • 160 Yoon SS, Hennigan RF, Hilliard GM. et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 2002; 3 (04) 593-603
  • 161 Tunney MM, Field TR, Moriarty TF. et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 2008; 177 (09) 995-1001
  • 162 Muhlebach MS, Hatch JE, Einarsson GG. et al. Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J 2018; 52 (01) 1800242
  • 163 Worlitzsch D, Rintelen C, Böhm K. et al. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 2009; 15 (05) 454-460
  • 164 Bittar F, Richet H, Dubus JC. et al. Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 2008; 3 (08) e2908
  • 165 Field TR, Sibley CD, Parkins MD, Rabin HR, Surette MG. The genus Prevotella in cystic fibrosis airways. Anaerobe 2010; 16 (04) 337-344
  • 166 Sibley CD, Grinwis ME, Field TR. et al. Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 2011; 6 (07) e22702
  • 167 Zemanick ET, Harris JK, Wagner BD. et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One 2013; 8 (04) e62917
  • 168 Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 2008; 105 (39) 15070-15075
  • 169 Caverly LJ, LiPuma JJ. Good cop, bad cop: anaerobes in cystic fibrosis airways. Eur Respir J 2018; 52 (01) 1801146
  • 170 Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 2003; 50 (05) 1477-1491
  • 171 Sibley CD, Duan K, Fischer C. et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 2008; 4 (10) e1000184
  • 172 Nguyen M, Sharma A, Wu W. et al. The fermentation product 2,3-butanediol alters P. aeruginosa clearance, cytokine response and the lung microbiome. ISME J 2016; 10 (12) 2978-2983
  • 173 Price CE, O'Toole GA. The gut-lung axis in cystic fibrosis. J Bacteriol 2021; 203 (20) e0031121
  • 174 Tony-Odigie A, Wilke L, Boutin S, Dalpke AH, Yi B. Commensal Bacteria in the cystic fibrosis airway microbiome reduce P. aeruginosa induced inflammation. Front Cell Infect Microbiol 2022; 12: 824101
  • 175 Gao B, Gallagher T, Zhang Y. et al. Tracking polymicrobial metabolism in cystic fibrosis airways: Pseudomonas aeruginosa metabolism and physiology are influenced by Rothia mucilaginosa-derived metabolites. MSphere 2018; 3 (02) e00151-18
  • 176 Lopes-Pacheco M. CFTR Modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2020; 10: 1662
  • 177 Heltshe SL, Mayer-Hamblett N, Burns JL. et al; GOAL (the G551D Observation-AL) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis 2015; 60 (05) 703-712
  • 178 Rowe SM, Heltshe SL, Gonska T. et al; GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 2014; 190 (02) 175-184
  • 179 Frost FJ, Nazareth DS, Charman SC, Winstanley C, Walshaw MJ. Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. a cohort study using national registry data. Ann Am Thorac Soc 2019; 16 (11) 1375-1382
  • 180 Hisert KB, Heltshe SL, Pope C. et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med 2017; 195 (12) 1617-1628
  • 181 Harris JK, Wagner BD, Zemanick ET. et al. Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation. Ann Am Thorac Soc 2020; 17 (02) 212-220
  • 182 Einarsson GG, Ronan NJ, Mooney D. et al. Extended-culture and culture-independent molecular analysis of the airway microbiota in cystic fibrosis following CFTR modulation with ivacaftor. J Cyst Fibros 2021; 20 (05) 747-753
  • 183 Taylor-Cousar JL, Mall MA, Ramsey BW, McKone EF, Tullis E, Marigowda G, Mckee CM, Waltz D, Moskowitz SM, Savage J, Xuan F, Rowe SM. Clinical development of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles. ERJ Open Res 2019; 5 (02) 00082-2019
  • 184 Cuevas-Ocaña S, Laselva O, Avolio J, Nenna R. The era of CFTR modulators: improvements made and remaining challenges. Breathe (Sheff) 2020; 16 (02) 200016
  • 185 Heijerman HGM, McKone EF, Downey DG. et al; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019; 394 (10212): 1940-1948
  • 186 Sosinski LM, H CM, Neugebauer KA. et al. A restructuring of microbiome niche space is associated with elexacaftor-tezacaftor-ivacaftor therapy in the cystic fibrosis lung. J Cyst Fibros 2021; (e-pub ahead of print) DOI: 10.1016/j.jcf.2021.11.003.
  • 187 Heirali AA, Workentine ML, Acosta N. et al. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. Microbiome 2017; 5 (01) 51
  • 188 Nichols DP, Donaldson SH, Frederick CA. et al. PROMISE: Working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J Cyst Fibros 2021; 20 (02) 205-212
  • 189 Rogers GB, Taylor SL, Hoffman LR, Burr LD. The impact of CFTR modulator therapies on CF airway microbiology. J Cyst Fibros 2020; 19 (03) 359-364
  • 190 Donaldson SH, Pilewski JM, Griese M. et al; VX11-661-101 Study Group. Tezacaftor/ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med 2018; 197 (02) 214-224
  • 191 Woo TE, Lim R, Surette MG. et al. Epidemiology and natural history of Pseudomonas aeruginosa airway infections in non-cystic fibrosis bronchiectasis. ERJ Open Res 2018; 4 (02) 00162-2017
  • 192 Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011; 35 (02) 247-274
  • 193 Schneider EK, Azad MA, Han ML. et al. An “Unlikely” pair: the antimicrobial synergy of polymyxin b in combination with the cystic fibrosis transmembrane conductance regulator drugs KALYDECO and ORKAMBI. ACS Infect Dis 2016; 2 (07) 478-488
  • 194 Reznikov LR, Abou Alaiwa MH, Dohrn CL. et al. Antibacterial properties of the CFTR potentiator ivacaftor. J Cyst Fibros 2014; 13 (05) 515-519
  • 195 Payne JE, Dubois AV, Ingram RJ. et al. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Int J Antimicrob Agents 2017; 50 (03) 427-435
  • 196 Cho DY, Lim DJ, Mackey C. et al. Ivacaftor, a cystic fibrosis transmembrane conductance regulator potentiator, enhances ciprofloxacin activity against Pseudomonas aeruginosa. Am J Rhinol Allergy 2019; 33 (02) 129-136
  • 197 Robledo F, Kopp B, Partida-Sanchez S. 493: Effects of elexacaftor/tezacaftor/ivacaftor on antimicrobial functions of CF neutrophils. J Cyst Fibros 2021; 20: S233
  • 198 Blau H, Linnane B, Carzino R. et al. Induced sputum compared to bronchoalveolar lavage in young, non-expectorating cystic fibrosis children. J Cyst Fibros 2014; 13 (01) 106-110
  • 199 Sagel SD, Sontag MK, Wagener JS, Kapsner RK, Osberg I, Accurso FJ. Induced sputum inflammatory measures correlate with lung function in children with cystic fibrosis. J Pediatr 2002; 141 (06) 811-817
  • 200 Ronchetti K, Tame JD, Paisey C. et al. The CF-sputum induction trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med 2018; 6 (06) 461-471
  • 201 Ordoñez CL, Henig NR, Mayer-Hamblett N. et al. Inflammatory and microbiologic markers in induced sputum after intravenous antibiotics in cystic fibrosis. Am J Respir Crit Care Med 2003; 168 (12) 1471-1475
  • 202 Davis MD, Montpetit AJ. Exhaled breath condensate: an update. Immunol Allergy Clin North Am 2018; 38 (04) 667-678
  • 203 Sethi S, Nanda R, Chakraborty T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 2013; 26 (03) 462-475
  • 204 Labows JN, McGinley KJ, Webster GF, Leyden JJ. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J Clin Microbiol 1980; 12 (04) 521-526
  • 205 Shestivska V, Nemec A, Dřevínek P, Sovová K, Dryahina K, Spaněl P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 2011; 25 (17) 2459-2467
  • 206 Filipiak W, Sponring A, Baur MM. et al. Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa . BMC Microbiol 2012; 12: 113
  • 207 Robroeks CM, van Berkel JJ, Dallinga JW. et al. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 2010; 68 (01) 75-80
  • 208 Robroeks CM, Roozeboom MH, de Jong PA. et al. Structural lung changes, lung function, and non-invasive inflammatory markers in cystic fibrosis. Pediatr Allergy Immunol 2010; 21 (03) 493-500
  • 209 Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 2017; 13 (10) 110
  • 210 Chmiel JF, Aksamit TR, Chotirmall SH. et al. Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 2014; 11 (07) 1120-1129
  • 211 Cystic Fibrosis Trust: UK Cystic Fibrosis Registry 2020 Annual Data Report; 2020
  • 212 Cystic Fibrosis Canada: The Canadian Cystic Fibrosis Registry 2020 Annual Data Report; 2020
  • 213 Cystic Fibrosis Australia: Australian Cystic Fibrosis Data Registry Annual Report; 2020
  • 214 Cystic Fibrosis Ireland: Annual Report of Cystic Fibrosis Registry of Ireland; 2020
  • 215 Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry: 2019 Annual Data Report. Bethesda, MD: Cystic Fibrosis Foundation; 2019