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Cystic fibrosis (CF) is the most common, fatal genetic disease
among the Caucasian population with an estimated preva-
lence of �100,000 people worldwide.1 Abnormal CF trans-
membrane conductance regulator (CFTR) function results in
altered sodium and bicarbonate transport across epithelial
surfaces with sequelae of multiorgan involvement. Thick
tenacious mucus in the lungs results in compromised muco-
ciliary clearance and predisposes to chronic bacterial infec-
tions, felt to be key drivers of progressive and irreversible
airway damage.2 Moreover, persons with CF (pwCF) demon-

strate periods of recurrent cycles of increasing respiratory
symptoms and reduction in lung function, known as pulmo-
nary exacerbations (PEx), interspersed between periods of
relative clinical stability.3 Importantly, 25% of individuals fail
to recover baseline lung function from these episodes despite
aggressive antimicrobial therapy.4,5 The advent of highly
effective modulator therapy (HEMT) has dramatically im-
proved both the respiratory and overall well-being of many
pwCF; however, structural lung damage with consequent
infections persists. Airway infections have consistently been
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Abstract Progressive obstructive lung disease secondary to chronic airway infection, coupled
with impaired host immunity, is the leading cause of morbidity and mortality in cystic
fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF)
include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia
complex, Achromobacter species, and Haemophilus influenzae. While traditional respi-
ratory-tract surveillance culturing has focused on this limited range of pathogens, the
use of both comprehensive culture and culture-independent molecular approaches
have demonstrated complex highly personalized microbial communities. Loss of
bacterial community diversity and richness, counteracted with relative increases in
dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have
long been considered the hallmark of disease progression. Acquisition of these classic
pathogens is viewed as a harbinger of advanced disease and postulated to be driven in
part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary
exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modula-
tors, small molecules designed to potentiate or restore diminished protein levels/
function, have been successfully developed and have profoundly influenced disease
course. Despite the multitude of clinical benefits, structural lung damage and conse-
quent chronic airway infection persist in pwCF. In this article, we review the microbial
epidemiology of pwCF, focus on our evolving understanding of these infections in the
era of modulators, and identify future challenges in infection surveillance and clinical
management.
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identified as a top research priority topic by both CF com-
munity members and clinicians with a specific goal of
improving “respiratory microorganism detection and treat-
ment.”6 In this review, we evaluate the historical and evolv-
ing landscape of CFairway infectionswith particular focus on
the era of HEMT. As other reviews in this series focus on
nontuberculous mycobacteria, fungi, and viral infections, we
direct the reader to those individual aforementioned
sections.

Traditional Landscape of Cystic Fibrosis
Airway Infections: the Classics

Microbial proliferation in the CF airways, as a consequence of
dysfunctional mucociliary clearance, is dynamic with in-
haled and aspirated microbes immigrating to the lower
airways where they have the opportunity to adapt to the
surrounding microenvironment, compete with resident mi-
croflora, where they may progress to chronic airway infec-
tions (►Fig. 1).7–9 In turn, these chronic airway infections
lead to persistent host inflammation which then potentiates
a vicious cycle of structural lung damage, airflow obstruc-
tion, and remodeling, and deteriorating respiratory function.

In the absence of life-saving lung transplantation, progres-
sive respiratory disease is the leading cause of death among
pwCF.10–12 The historic view of CF airways was one of
evolution through age and disease-stage with the character-
istic presence of Haemophilus influenzae and Staphylococcus
aureus during infancy and early childhood, eventually sup-
planted by Gram-negative bacteria, including Pseudomonas
aeruginosa and the Burkholderia cepacia complex
(►Fig. 2).2,13 These classic pathogens have long been consid-
ered as hallmarks of progressive lung disease—where they
increase in prevalence and abundance with advancing dis-
ease severity and their presence is associated with acceler-
ated lung function decline.14 The eventual domination of
airway communities by these classical pathogens (acquired
from either natural environments or patient-patient spread)
is postulated to be driven in part by recurrent and frequent
antibiotic exposure in response to acute PEx.15–17 However,
as we will explore further in this review, the evolving
landscape of airway microbiology created through intense
study has offered new insight into these complex communi-
ties (►Fig. 3). Importantly, our review of each individual
pathogen is by necessity general—and the reader is directed
to several detailed reviews for further reading.15,18–23

Fig. 1 Microbiology of the Cystic Fibrosis Airways. Microaspirated microbiota shapes early colonizing communities through a balance of
microbial immigration (movement of microbes into a new environment), growth and reproduction (influenced by factors for regional growth
conditions including: (1) environmental (i.e., nutrient availability, temperature, pH, and oxygen tension); (2) host (i.e., concentration and
activation of inflammatory cells); and (3) bacterial (i.e., local microbial composition/competition) and subsequent elimination (movement of
microbes out of an environment (i.e. through cough and adjunctive airways clearance measures, antimicrobial therapies, and host immune
defenses]). In CF microbial elimination, as a function of mucociliary clearance and host defense is critically impaired. Classic pathogens that
infect CF airways include Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), the Burkholderia cepacia complex (Bcc), Haemophilus
influenzae (Hi), Stenotrophomonas maltophilia (Sm), and Achromobacter spp (Ax). Nonclassical taxa such as anaerobes and oropharyngeal flora
(OF) also reside within the microbiome. Development of aggregates and polymicrobial biofilms contribute to longevity of chronic infections and
antimicrobial resistance. Microbe–microbe interactions within this community are numerous with examples including synergy (blue arrows, i.e,
upregulation of pathogen virulence by otherwise commensal bacteria) and inhibition (red dashed lines, i.e., competition and growth inhibition
of S. aureus by P. aeruginosa). Taken together, this complex milieu contributes to the upregulation of host proinflammatory mechanisms and
perpetuates vicious cycles of inflammation and infection. Figure created with BioRender.

Seminars in Respiratory and Critical Care Medicine Vol. 44 No. 2/2023 © 2023. Thieme. All rights reserved.

Microbial Epidemiology of the Cystic Fibrosis Airways Thornton, Parkins270

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Fig. 2 Epidemiology of cystic fibrosis airways pathogens—a global perspective. (A) Overall prevalence of classical pathogens by any
positive culture in 2020 as reported by patient registry data from the United Kingdom,211 Canada,212 Australia,213 Ireland,214 and the
United States.215 (B) Prevalence (y-axis) of CF pathogens by any positive culture stratified by age groups (x-axis) by country. Minor corrections for
age ranges were made in order to compare to other regions. All data were used with permission by each respective CF registry.
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Staphylococcus aureus
S. aureus, a gram positive, is often the earliest cultured
pathogen in pwCF and reaches its highest prevalence rela-
tively early in life (50% of infants less than 2 years of age and
up to 80% in early adolescence).24,25 Acquisition of S. aureus
early in life is often attributed to high nasal colonization,
estimated to be up to 30% in the general population.25 S.
aureus has recently become the most prevalent pathogen in
pwCF due to a number of factors including the efficacy of
early eradication interventions directed against other patho-
gens. Ecological pressure including regions of relative
hypoxia secondary tomucusplugging, host immunedefenses,
availability of nutrients, antibiotic therapy, and competition
with other pathogens results in the need for rapid adaptation
to enable survival. Such mechanisms include aggregate and
biofilm formation,26 inwhich bothhost immune response (i.e.,
host antibodies and macrophages) and antibacterial therapy
poorly penetrate, thereby ensuring persistence.27 Infection
with S. aureus has adverse clinical outcomes including a
greater degree of airway inflammation and lower lung func-
tion.28–31 Given the importance of this pathogen in younger
pwCF, prophylactic therapy followed by suppressive strategies
followingacquisitionwithnarrow-spectrumanti-Staphylococ-
cal therapies has been assessed in multiple contexts,32–35 but
its routine use is regionally dependent.

Methicillin-resistant S. aureus (MRSA) emerged shortly
after the introduction of methicillin as a semisynthetic
penicillinase-resistant antibiotic in the 1960s.25 The MRSA
phenotype results from the horizonal gene transfer of mecA,
encoding the alternative penicillin-binding protein-2awhich

has low affinity for methicillin and the isoxazolyl penicillins
(and by inference all other beta-lactams, other than the fifth
generation cephalosporins).36 While in the minority com-
pared to methicillin-sensitive S. aureus (MSSA), the preva-
lence of MRSA ranges from 10 to 25% of pwCF globally—but
with significant variation by country (►Fig. 2). MRSA infec-
tion is of particular clinical concern as its presence is
associated with accelerated lung function decline37 and
excess-associated mortality.24,38,39

S. aureus phenotypic divergence has been shown to
influence clinical outcomes. Small colony variant (SCV)
transformation is another such adaptation disproportionate
in CF that is characterized by mutations in metabolic genes
causing nutritional growth deficiencies (making their iden-
tification in the laboratory more challenging) but conferring
a survival advantage including resistance to antibiotic pres-
sure and host defenses. SCVs are prevalent (found in 8.1-24%
of pwCF) and disproportionally observed in higher numbers
among MRSA—attributed to higher sulfonamide treat-
ments.40 SCVs add a further layer of complexity for clinicians
as they are frequently foundwithin host cells and are thereby
relatively protected from the effects of many antibiotics—
making management difficult (►Table 1).41–43 Consequent-
ly, SCVs have been associated with chronic infection, worse
lung function, antibiotic resistance, and proliferation in the
presence of other pathogens including P. aeruginosa.42,44–46

Notably, in a recent large multicenter-longitudinal study of
CF children, across multivariate models including P. aerugi-
nosa andMRSA, only SCVs were consistently associated with
worse clinical outcomes.40

Fig. 3 Depictions of microbial concepts in the CF airway. (A) Within CF airways, organisms can cause infection (i.e., microorganism that directly
or indirectly causes or can cause, disease) or colonization (i.e., microbes that reside within the lung without causing harm). (B) Pathogens in CF
airways can be viewed as classic (i.e., well-established organisms that cause CF progression and are tracked in national registries) or emerging (i.
e., microorganisms not traditionally associated with CF, increasingly being recovered). (C) The natural history of infection—in particular with P.
aeruginosa—includes both acute (i.e., acquisition of intermittent unique strains) and the eventual development of chronic (i.e., persistence of one
P. aeruginosa strain, often associated with mucoid conversion) status. (D) Antibiotics can be used to achieve eradication (i.e., early and intensive
use of antibiotics in response to a newly identified pathogen to eliminate it from airways, thus preventing or delaying the establishment of
chronic infection) or suppression (i.e., intermittent use to alleviate or control symptoms rather than eliminate chronic infection—which is not
possible once established). (E) Strains of P. aeruginosa may be unique (i.e., those acquired through environmental exposures and not shared
among other individuals) and/or epidemic (i.e., a clonal strain that exists among a local CF population at a high prevalence and has been
conclusively demonstrated to be spread from CF person-to-person). Figure created with BioRender.
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Table 1 Commonly used antibacterial drugs and their relative spectrum of activity against classical CF pathogensa

Abbreviations: A, Achromobacter. spp.; Bcc, Burkholderia cepacia complex; Hi, Haemophilus influenzae; MRSA, Methicillin-resistant Staphylococcus
aureus; MSSA, Methicillin-sensitive Staphylococcus aureus; Pa, Pseudomonas aeruginosa; SCV, small-colony variant; Sm, Stenotrophomonas maltophilia.
Note: Green boxes denote sensitivity, yellow boxes denote intermediate activity, and red boxes denote lack of efficacy.
aDrugs are organized by class and activity is inferred from references.48,97,215
bRefers to regular growth.
cAgent with extensive bioavailability with oral route generally preferred.
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The role of chronicMSSAprophylaxis and/or suppression is
unclearwith a lackofconsensusaroundwhether preventionof
colonization is an effective and safe measure to reduce the
acquisition of early lung infection. Indeed, a Cochrane review
found that while fewer children were positive for S. aureus
when commenced with therapy early in infancy, the clinical
impact was unclear with no significant differences in lung
function, hospital admissions, or nutritionwhen compared to
those without prophylaxis.33 Moreover, given the association
with an increased prevalence of P. aeruginosa following chron-
ic suppressive anti-staphylococcal therapy,32,47 the U.S. CF
Foundation guidelines recommend against its routine use.48

In contrast, given the disproportionate impact of chronic
MRSA on CF clinical outcomes, eradication attempts may be
warranted to prevent persistent infection. Two placebo-con-
trolled randomized trials have been conducted to evaluate the
efficacy of MRSA early eradication using decolonization pro-
tocols (nasal, skin, and/or oral) with mupirocin/chlorhexidine
and 14 to 21days of systemic trimethoprim-sulfamethoxazole
in combination with rifampin (with alternate regimens
allowed in the case of resistance or intolerance). Muhlebach
and colleagues used a 14-day antibiotic protocol and showed
significantly lower MRSA positivity in the treated (26%) com-
pared to the placebo (82%) arm at the primary endpoint of
28 days (p<0.001).49Moreover, this effect was sustainedwith
54% of subjects in the MRSA-negative treatment arm after
12 weeks, compared to 10% in the control group. In contrast,
Neri et al identified a trend that did not meet significance, in
the prevalence of chronic MRSA negativity (defined as three
negative cultures) between treated and control arms after
6 months.50 Taken further, the Persistent MRSA Eradication
Protocolwas a randomized-control trial evaluating a cohort of
29 adult pwCF with chronic (rather than new MRSA) coloni-
zation to evaluate the potential of nebulized vancomycin or
placebo in addition to oral antibiotics (rifampin and
trimethoprim/sulfamethoxazole or doxycycline) at clearing
infection.51,52 There were no significant differences in MRSA
culture negativity at 1 or 3 months, lung function, symptom
scores, or absolute density of MRSA between those receiving
nebulized vancomycin or placebo.52 Finally, a Cochrane sys-
tematic reviewevaluating the evidence oferadication ofMRSA
colonization in general (non-CF) populations evaluated six
clinical trials and concluded not only insufficient data around
eradication efficacy but also a high rate of adverse events
associated with treatment (20%).53 Taken together, these data
demonstrate that eradication does decrease rates of persis-
tence and reduce exacerbation frequency—but have not con-
firmed slower lung disease progression, likely in part due to
recruitment challenges.49,54 This is particularly relevant in
MRSA-related outcomes as early CF studies that were not
adequately powered initially failed to demonstrate MRSA’s
significant potential for harm.55

Haemophilus influenzae
H. influenzae, a gram-negative coccobacillus, is commonly
found in the upper respiratory tract of healthy and ill individ-
uals alike—but recovery from the lower airways in pwCF is
thought to indicate disease as its presence is associated with

local inflammation.56,57 H. influenzae is the second most
prevalent species (approximately 28%) in the first 5 years of
life of pwCF—with similar rates into early adolescence before
declining to approximately 10% in adulthood.58 H. influenzae
possesses several adherence factors that contribute to bacteri-
al colonization, persistence, and biofilm formation.59 Nonen-
capsulated H. influenzae are most commonly identified in
pwCF including those associatedwith PEx.15,60Unique relative
to other CF pathogens, strains of H. influenzae causing infec-
tions in pwCF are usually transient in airways with persistent
infection over years by a single strain occurring only in a
minority of cases.61H. influenzae frompwCFhave the ability to
become resistant to several classes of antibiotics (►Table 1),
driven in part by hypermutability phenotypic adaptation.61,62

While the clinical implications of H. influenzae isolation are
less clear, a retrospective longitudinal study of 349 patients
over 15 years (1998–2012) indicated a doubling in prevalence
(8–16%, p<0.0001;mean age 7.6 years) over the study period,
suggesting this is likelybecomingagreatercauseof infection in
younger pwCF.63 Given the high turnover of H. influenzae
strains within the CF airways, studies examining the potential
impact of early confirmed culture-directed therapy are lack-
ing, and thepractice of treatment (vs. observation) is currently
clinician dependent.

Pseudomonas aeruginosa
P. aeruginosa, a gram-negative bacillus, is historically themost
prevalent (approximately 60–80%) pathogen in adult pwCF.
The increasing prevalence of P. aeruginosa in adolescence and
young adulthood is felt to be driven by both bacterial
exposure and recurrent antibiotic courses from the eradi-
cation of early airway colonizers.64 Using data from several
national CF patient registries (►Fig. 2), a significant rise in P.
aeruginosa prevalence can be observed between those 6 to
10 years and those 18 to 24. Concurrently, the prevalence of
both H. influenzae and S. aureus decreases in parallel with
increases in P. aeruginosa, further depicting dynamic longi-
tudinal shifts among the classical pathogens.65

P. aeruginosa is ubiquitous in the local soil and aquatic
environment, thus ensuring exposure from a range of sour-
ces.66 Historically, it was perceived that P. aeruginosa strains
were unique to each individual CF patient and that for
transmission to occur, repeated and close contact was re-
quired (i.e., such as that exhibited in the same household or
between siblings).66 However, our understanding of trans-
mission has expanded with the recognition of several epi-
demic strains passed exclusively from pwCF to pwCF (i.e., the
transcontinental Liverpool epidemic strain), many of whose
infection is associated with worse outcomes.66,67 Once ac-
quired chronically, pwCF typically harbor strains that rapidly
evolve through several adaptive mechanisms, including the
acquisition of mutations. One such example is the transition
from nonmucoid to mucoid phenotype, which is associated
with fitness advantages and consequent accelerated clinical
deterioration.68,69

The natural history of incident P. aeruginosa acquisition is
such that infectionsmayevolve into chronic infectionwhere-
by a specific strain recovered by culture is observed with
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increasing frequency before eventually being identified.70

While multiple definitions of chronic infection exist,71 the
most commonly used is the Leeds criteria72 (i.e., isolation of
P. aeruginosa in >50% of sputum cultures over a 12-month
period). Development of chronic P. aeruginosa has significant
adverse clinical impacts including worse baseline
ppFEV1,66,73–75 accelerated lung function decline,74,76,77

worse radiographic and symptom scores,78,79 lower nutri-
tional status,80 and faster progression to end-stage lung
disease and death77,81–84 compared to those pwCF without
P. aeruginosa. Moreover, children colonized with P. aerugi-
nosa have on average a 10-year reduced survival compared to
those patients without P. aeruginosa infection.85

Traditional dogma once held that P. aeruginosa chronic
airway infection was an inevitable consequence of disease
progression; however, it is now understood that early and
aggressive antibacterial eradication protocols may abrogate
P. aeruginosa’s potential to cause chronic infection until
further into adulthood (and potentially indefinitely).66,86 A
wide range of P. aeruginosa early eradication protocols have
been developed and assessed for efficacy relative to historical
controls. Because of this compelling evidence base, early
eradication—in one form or another—has become the stan-
dard of care without a placebo-controlled randomized study
having ever been performed.87–89 Indeed, early eradications
are largely credited with the tremendous drop in P. aerugi-
nosa prevalence observed in recent cohorts (►Fig. 2). Ac-
cordingly, guidelines recommend serial airway surveillance
and prompt eradication in response to new P. aeruginosa
acquisition with inhaled antibiotic regimens that include
tobramycin, colistin, and/or aztreonam (►Table 1); however,
optimal regimens are continually being explored.90 The Early
Pseudomonas Infection Control (EPIC) study found no addi-
tional benefit to oral ciprofloxacin in addition to nebulized
high-dose tobramycin relative to tobramycin alone over 28
days.88 Similarly, extending treatment with tobramycin over
56 days conferred no additional benefit in the ELITE study.87

The recent Trial of Optimal Therapy for Pseudomonas Eradica-
tion in Cystic Fibrosis (TORPEDO-CF) sought to evaluate the
addition of 14 days of ceftazidime/tobramycin or 12 weeks of
oral ciprofloxacin in combination with 12 weeks of nebulized
colistin. Althoughtherewere fewerhospitalizedpatients in the
intravenous group during follow-up, the authors’ concluded
outcomes were not different.91 While antipseudomonal pro-
phylaxis is not currently recommended following successful
eradication (given the observation that secondary cycled
prophylactic antipseudomonal antibiotic therapy offers no
advantage over culture-based treatment), clinical uncertainty
exists with the repeat isolation of P. aeruginosa—where this
may represent a new infection or initial failure of eradica-
tion.66 When possible, management strategies may be in-
formed with the use of isolate genotyping to discern
incident versus persistent strain status.66 Novel, incremental
eradication strategies that seek to sequentially manage initial
failureswith increasinglyaggressive regimens are increasingly
being invoked.92,93

While prevention of chronic infection is felt to amelio-
rate adverse clinical outcomes, the evidence this provides a

durable clinical benefit is less convincing. Mayer-Hamblett
and colleagues evaluated long-term efficacy over 5 years in
a cohort of pediatric subjects in the EPIC study who received
eradicative therapy for newly acquired P. aeruginosa. While
those who achieved sustained eradication throughout the
trial had a reduced risk of developing chronic P. aeruginosa,
mucoid phenotype detection, and less antipseudomonal
antibiotics, there was no significant association in the
rate of PEx or lung-function decline—suggesting microbio-
logic outcomes may not directly translate to clinical re-
sponse.94 Alternatively, this may demonstrate the durability
of chronic suppressive antipseudomonal therapies. Indeed,
many of the gains achieved in CF outcomes prior to the
HEMT era directly relate to the potency and efficacy of
antipseudomonal suppression developed through dedicated
clinical studies.95–98 A discussion on the strategies, regi-
mens, and drugs used for the acute and longitudinal man-
agement of chronic of P. aeruginosa is well beyond the scope
of this review. Indeed, lessons derived from P. aeruginosa
have now been applied to other pathogens in pwCF and
other chronic lung diseases (i.e., non-CF bronchiectasis,
NCFB).

Burkholderia cepacia Complex
The B. cepacia complex (Bcc) consists of over 20 closely
related species15 with the two most commonly identified
in CF being B. cenocepacia and B. multivorans. While these
species are lumped together based on bacteriologic features,
the clinical impact of these different species is often pro-
foundly different.31 While the prevalence of Bcc is generally
reported as 5 to 10% of pwCF (►Fig. 2), a recent Canadian
study demonstrated profound epidemiological shifts within
this range, with a significant decline in the limited numbers
of epidemic B. cenocepacia strains more recently being
replacedwith the increasing prevalence of nonclonal isolates
of B. multivorans and other species.99 B. cenocepacia, in
particular, have been associated with more severe lung
disease including rapid respiratory decline and increased
overall mortality.100 While uncommon and very rare in
recent years, rapidly progressive necrotizing pneumonia
with or without refractory bacteremia termed “cepacia
syndrome” from (predominately) B. cenocepacia has been
associated with near-uniform fatality.11 Those pwCF with
Bcc infections prior to lung transplant are more likely to
result in rapid decline and experience higher mortality
following lung transplant, with infection often precluding
transplant listing in all but the most experienced centers.101

Recognized even prior to P. aeruginosa, patient-to-patient
transmission of epidemic clones of B. cenocepacia (in partic-
ular ET-12) and B. dolosa has been one of the driving forces
behind the advancement of infection and prevention control
measures to prevent the spread.102–104 Given the adverse
outcomes associatedwithmany Bcc chronic infections, there
is great interest in extrapolating early eradication learnings.
Owing to low incidence, currently, there are no uniform
practice guidelines around eradication in response to early
isolation.31,105,106 Antibiotic therapy for Bcc is even more
complicated than P. aeruginosa and limited by the high level
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of intrinsic and easily acquired antibiotic resistance, leaving
few therapeutic options (►Table 1).

Stenotrophomonas maltophilia
Stenotrophomonas maltophilia is a gram-negative bacteria
with inherent multidrug resistance that has increasingly
emerged over the last few decades as pwCF are living longer
—with prevalence rates ranging from 8 to 14% of adults.107

Infection with S. maltophilia disproportionally occurs in
those with more advanced disease and those who experi-
ence more exaggerated rates of lung function de-
cline.108,109 While some speculate that the presence of S.
maltophilia may simply represent colonization without
directly impacting long-term lung function or surviv-
al,108,110 a large cross-sectional cohort study of pwCF using
serum antibody levels demonstrated that chronic infection
was an independent risk factor for PEx requiring hospitali-
zation.111 Notably, the association of chronic S. maltophilia
infection as a risk factor for hospitalization for PEx
remained when adjusted for other clinical factors including
baseline ppFEV1, disease stage, age, and presence of P.
aeruginosa. Moreover, there were increased unadjusted
rates of mortality and lung transplantation among those
with S. maltophilia infection although the effect was not
significant after adjustment using a time-varying model.112

More recently, a single-center cohort study identified pwCF
and incident acquisition of S. maltophilia to have a worsen-
ing mean annual decline in ppFEV1 (�2.14 vs. �1.67/year)
and increased hospitalization rates.113 A recent Cochrane
review found no available randomized control trials in
either the setting of acute PEx or chronic infection to
evaluate the effectiveness of antibiotic therapy against S.
maltophilia in pwCF.107 There are currently no consensus
guidence statements regarding treatment or eradication
strategies. Given this lack of evidence, the current mainstay
of management is determined by clinical experience with
the field uniformly acknowledging a desperate need for
pragmatic trials.

Achromobacter species
Achromobacter spp. are aerobic, nonfermenting gram-nega-
tive bacilli frequently recovered from environmental rese-
voirs.114 Variations in center-to-center reported prevalence
are significant and likely reflect varying ability to correctly
identify and distinguish from other pathogens such as P.
aeruginosa, infection control, and antibiotic usage.115,116

While infections were historically attributed exclusively to
Achromobacter xylosoxidans, we now recognize the diversity
of Achromobacter species in pwCF—with many species as
prevalent as A. xylosoxidans.117 Similar to P. aeruginosa,
Achromobacter. spp possess several intrinsic characteristics
enabling survival and potentially contributing to disease
progression including highly dynamic genomes, hypermu-
tation, intrinsic multidrug resistance, and capability to pro-
duce biofilms.118 The clinical significance of Achromobacter,
in particular A. xylosoxidans, has been debated with some
early studies demonstrating no differences in lung function
between those colonized and not.114,119 More recently,

others have demonstrated pwCF colonized with A. xylosox-
idans exhibit accelerated decline in pulmonary func-
tion115,120 with decline in ppFEV1 at rates similar to
colonization with P. aeruginosa.121 While most studies eval-
uating Achromobacter have been done in adults, Sunman et al
observed similar findings in children with CF with signifi-
cantly greater ppFEV1 decline (�9.07 vs. �1.18/year,
p¼0.0043) and number of PEx (4 vs. 3, p¼0.0001) in the
infected compared to uninfected group, respectively.122 Sim-
ilar to P. aeruginosa and Bcc, clonality and potential trans-
mission of Achromobacter between pwCF have been
suspected.114 Currently, there is no evidence to provide
guidance on whether eradication may abrogate chronic
infection and no standard eradication protocols exist. The
role of additional inhaled antibiotics in systemic therapy in
Achromobacter eradication is not definitively established,
although one study showed 56% of patients who received
inhalation therapy (ceftazidime, colistin, or tobramycin)
remained colonization-free after 3 years compared to 13%
of patients without treatment.123 Early studies evaluating
cefiderocol, a newer generation parenteral siderophore-
linked cephalosporin,124 have shown some promise toward
eradication in small cohorts125,126 but long-term efficacy
and dosage in pwCF remain unknown.

Other Cystic Fibrosis Pathogens
While the classical pathogens detailed above and reported in
national data registries remain the most common among
pwCF (►Fig. 2), a range of organisms previously rarely
observed (or recognized) have increasingly been reported
(i.e., Chryseobacterium, Inquilinus, Pandoraea, and Ralstonia
species).15 Given the rarity of these species in clinical medi-
cine, they have garnered considerable attention. In contrast,
members of the Enterobacterales (i.e., Escherichia coli and
Serratia marcescens) are commonly found in single-center
studies but comprehensive efforts to understand their prev-
alence in large datasets remain lacking.127 Hector et al found
changing epidemiology patterns of classic pathogens over
the last decade across Europe including decreases in P.
aeruginosa and Bcc with subsequent increases in NTM, S.
aureus and S. maltophilia.128 Changes in prevalence are
multifactorial and likely reflect improvements in both clini-
cal care and infection control practice patterns.105,129 Taken
together, whether these truly represent “emerging patho-
gens” only time and development of longitudinal studieswill
tell.

Culture-Independent Techniques and the
Evolving Landscape of Cystic Fibrosis Airway
Infections

The adoption of culture-independent molecular analysis
over the last two decades has demonstrated complex micro-
bial communities within the airways of pwCF well beyond
those recovered through traditional aerobic culture using a
limited number of semiselective media.15 This relative
“shift” in the understanding of infection in CF, from single
host-pathogen relationship to complex polymicrobial
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community complete with interspecies competition and
differential host response, has moved to the forefront of CF
microbiology. Moreover, understanding the nuance between
colonization and infection is crucial as historically this
distinction was made based on the ability to provoke an
inflammatory host response, and new data demonstrate the
complexity of indirect pathogenesis and potential for antag-
onism. Pioneering work by Rogers et al130 and Harris et al131

first recognized complex communities in CF-derived sputum
far beyond that identified through traditional aerobic cul-
ture. Following these studies, a wide range of investigators
using next-generation sequencing have worked to expand
our understanding of the CF airways. A relative “core com-
munity” (present in high abundance across a large propor-
tion of patients) including Streptococcus, Prevotella,
Veillonella, Neisseria, and Porphyromonas, has been detected
in the majority of adult studies in addition to the classic
pathogens of Pseudomonas and Staphylococcus.132 However,
the breadth of diversity is much greater. Culture-indepen-
dent methods have identified 50 to 200 unique operational
taxonomic units in individual CF samples (with the majority
representing satellite organisms—present in low abundance
and/or in a minority of individuals). Accordingly, it is now
widely accepted that the CF lung is home to diverse bacterial,
fungal, and viral taxa and that these polymicrobial commu-
nities are highly individuated to each patient17,133–142 such
that the same community makeup persist even in pwCF
postlung transplantation.143

Not surprisingly, themicrobial community in advanced CF
disease is particularly skewed with a small number of
dominant pathogens that clonally expand to occupy a sizable
proportion of the surrounding niche.144–146 In contrast,
diversity, a measure of species richness and evenness of a
community, is often maintained in patients with stable
respiratory function.17 Multiple studies have established
that a pattern of decreasing microbial diversity is associated
with subsequent deterioration in lung function over
time147–153 counteracted with relative increases in domi-
nant taxa by traditional CF pathogens.17,134,154,155 For in-
stance, as P. aeruginosa colonization becomes chronic in late
adolescence and early adulthood, community richness and
diversity are lost and this associates with disease progres-
sion.17,156 Finally, as in any ecosystem, microbes found in the
CF lung are linked by dynamic and complex webs of inter-
actionswith dysbiosis allowing neworganisms to proliferate
and existing populations to expand.157

The CF lung represents a unique ecological niche where
mucosal hyperviscosity and ongoing bacterial proliferation
further propagate the development of a heterogenous oxygen
gradient,158 in part due to diffuse areas of bronchiectasis and
mucus plugging.159,160 Consequently, anaerobic bacteria are
now recognized as part of the core CF microbiota including
Prevotella, Veillonella, Fusobacterium, Peptostreptococcus, and
Porphyromonas.161–163 Furthermore, many CF pathogensmay
also function as facultative anaerobes given hypoxic regions
within the airways. While ample studies have clearly estab-
lished that these organisms can colonize the airways of
patients at cell densities comparable to classical CF patho-

gens,161,164–166 if and how they might contribute to disease
progression remains controversial. A large cross-sectional
cohort analysis by Zemanick et al identified subjects with a
high proportion of anaerobes within sputum experienced
reduced inflammation and improved lung function compared
to those subjects with P. aeruginosa.167Using extended bacte-
rial culture methods to assess sputum and bronchoalveolar
lavage specimens froma large cohort of pwCF,Muhlebach et al
sought to better delineate this relationship. Ultimately, both
the presence and relative abundance of anaerobes were asso-
ciated with milder disease, including improved lung func-
tion.162 While beneficial roles of anaerobes have been
postulated, negative associations have more frequently been
reported with several studies demonstrating increased abun-
dance correlating to PEx.147–150,168,169

The lower airways should be considered from a polymi-
crobial perspective with microbe–microbe and microbe–
host interactions. Several animals and in vitro studies have
demonstratedmicrobial interactions contributing to a great-
er degree and persistence of infection. For example, the
increased virulence potential of P. aeruginosa in response
to the presence of previously considered benign commensal
microbiota is partially mediated by the general bacterial
signaling molecules AI-2170,171 and 2,3-butanediol.172 Mi-
crobial metabolites produced locally in the airways or from
the gut, such as small chain fatty acids, can affect host
responses although there are contradictory data around
the beneficial or harmful response.173 Althoughmost studies
to date have sought interactions that increase the virulence
of CF pathogens, it is expected that antagonistic interactions
may occur such as in vitro data demonstrating that several
commensal isolates of S. mitis and S. oralis derived from
patient sputum can reduce epithelial cell proinflammatory
responses to P. aeruginosa.174 Recently, Rothia mucilaginosa,
commonly found in the oropharyngeal and lower respiratory
tract in CF, was found to have an inhibitory effect on patho-
gen (i.e., P. aeruginosa, and S. aureus) induced pro-inflamma-
tory responses, both in vitro and in vivo.175

How Cystic Fibrosis Transmembrane
Conductance Regulator Modulators Can
Affect Infections: Real-World Evidence

The successful introduction of HEMT to a large fraction of the
CF population (estimated >90% in some countries)176 has
been a pivotal milestone in the fight to control and mitigate
CF. However, as airway infections persist (as described
below), a great many questions have arisen. While still in
its infancy, several real-world studies provide some early
insight into these issues (►Fig. 4).

Ivacaftor, targeting the Gly551Asp gating mutation to
increase channel time, was the first available HEMT released
in 2012 but available only to a fraction of pwCF.65 Several
outcome measures including ppFEV1, body mass index, and
quality of life showed remarkable improvement in clinical
trials for both pediatric (STRIVE) and adult (ENVISION)
cohorts. Given these changes, how do CF pathogens and
microbial communities differ following therapy? Heltshe
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et al evaluated P. aeruginosa persistence by culture in 151
pwCFand found that 29% of those positive in the year prior to
ivacaftor initiation were culture negative in the year follow-
ing, while 88% of those that were P. aeruginosa free in the
year prior remained negative,177 confirming earlier obser-
vations of P. aeruginosa burden reduction after 6 months of
therapy.178 Similarly, a retrospective cohort of 275 pwCF on
ivacaftor showed a significant long-term decline in the
relative abundance of all classical pathogens, except Bcc.179

Given most adult pwCF exhibit chronic airway infections,
what is the sustainability ofmicrobial changes observedwith
HEMT? To address this, Hisert et al assessed a cohort of 12
pwCF chronically infected with P. aeruginosa, Bcc, and/or S.
aureus over 2 years of ivacaftor treatment.180 All subjects
exhibited reduced P. aeruginosa culture abundance in spu-
tum within the first year, with 10-fold declines in colony
forming units (CFUs) seen as early as the first week following
therapy. However, CFUs rebounded by 210 days and none of
the subjects exhibited persistently negative cultures for P.
aeruginosa during the study period—indicating eradication
did not occur. Moreover, each subject continued to be
infected with the same strain of P. aeruginosa preivacaftor
initiation.

Given the changes observed in cultured pathogens, spec-
ulation around whether the microbiome changes have also
arisen. Harris et al used 16S rRNA sequencing to measure

total and specific bacterial load from sputum in 31 pwCF pre-
and postivacaftor initiation.181 While ppFEV1 improved over
the 6-month study period, there were no significant changes
in bacterial load or diversity following treatment. Einarsson
et al investigated a cohort of pwCF followed prospectively for
12 months with serial sputum samples pre- and postivacaf-
tor.182 Extended-culture methodology demonstrated higher
densities of obligate anaerobic bacteria, and greater richness
and diversity posttreatment; however, no significant differ-
ence in bioburden was observed by qPCR for either total
bacterial 16S rRNA or P. aeruginosa. Culture-independent
approaches confirmed significant increases in richness and a
trend toward increased diversity (p¼0.07) following treat-
ment.Moreover, improvement in lung function, richness and
diversity displayed an inverse correlationwith inflammatory
markers. While this relative shift toward a “healthier” lung
microbiome was observed postvacaftor, the authors note
overall community composition changes were modest.

Approved in 2019, elexacaftor tezacaftor ivacaftor (ETI) is
relevant to many pwCF as it is effective for all those with at
least one copy of the F508del CFTR mutation (and other
specific rare mutations),183 accounting for �90% of individ-
uals.184 ETI has demonstrated impressive multifaceted clini-
cal benefits including amedian 13% absolute improvement in
ppFEV1 and approximately 60% reduction in PExcompared to
placebo. Moreover, ETI is superior when compared to other
modulators such as tezacaftor/ivacaftor in head-to-head
studies.185 Thefirstmicrobiome study completed by Sosinski
et al found that diversity and evenness increased in 24 pwCF
(with �1 F508del mutation) pre- and post-ETI therapy but
with no specific microbial taxa changes apart from the log-
ratio of pathogens to anaerobes, indicating modest commu-
nity restructuring.186 Consistent with almost all other lon-
gitudinal studies, the microbiome structure was more
similar within an individual pre- and posttreatment than
between subjects after-modulator initiation.133,187

Given the findings described above, questions have been
raised around the durability of HEMT-related effects in
airwaymicrobiology. To address this, the upcoming PROMISE
(NCT04038047), a large U.S. multidisciplinary prospective
study assessing the broad impacts of long-term ETI therapy
in pwCF �6 years aims to clarify some of these questions
raised by evaluating both culture-dependent and indepen-
dent measures of pathogen/microbiome-constituent abun-
dance.188 PROMISE will examine nearly 250 subjects with
collections of sputum at 1-, 3-, 6-, 12-, and 24-month time
points with the goal to define changes in pathogen density
over time by utilizing 16S rRNA gene sequencing and patho-
gen-targeted quantitative PCR to determine pathogen per-
sistence and individual microbiomes changes over time.

How Does Partial Correction of Cystic
Fibrosis Transmembrane Conductance
Regulator Dysfunction Impact Cystic
Fibrosis Airway Infections?

CFTR modulators have the potential to exert an impact on
airway infections through several mechanisms (►Fig. 4).189

Fig. 4 Mechanisms by which HEMT is proposed to impact microbial
communities in the CF airways. (A), Modulators may have direct
antimicrobial properties against pathogens, such as killing of
Staphylococcus aureus and P. aeruginosa. (B) CFTR modulators may
synergize with traditional antibiotic therapy, such as those delivered
by chronic nebulization, to disproportionally kill pathogens. (C)
Therapy with CFTR modulators leads to decreased bioburden and
relative restructuring of microbiome constituents. (D) Anti-
inflammatory properties, whether direct through the modulator
therapy itself or indirect through mechanisms described previously
reduce host inflammation. (E) Improved mucus hydration and
subsequent mucociliary clearance may improve bacterial clearance
and therefore reduce bioburden within the airways. Figure created
with BioRender.
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First, improved mucus hydration and subsequent mucocili-
ary clearance may improve bacterial clearance and therefore
reduce bioburden within the airways.178,180,190 Despite this,
structural lung disease including irreversible bronchiectasis
will continue to persist—potentially creating a phenotype
more in keeping with NCFB. Notably, while infection
abounds in NCFB, rates are lower and respiratory deteriora-
tion slower.191 Second, growing evidence suggests CFTR
modulators may have intrinsic, albeit weak, and antimicro-
bial properties. Ivacaftor, a G551D potentiator, contains a
quinoline ring in its structure of which derivates often have
antibacterial activity through attenuation of DNA replica-
tion.192 In a small study, Schneider et al demonstrated
Ivacaftor as a weak inhibitor of DNA gyrase and topoisomer-
ase IV.193 Direct inhibition in a dose-dependent fashion by
ivacaftor was observed against S. aureus and to a lesser
extent, P. aeruginosa.194 Modulators may act synergistically
with traditional antibiotic therapy. Ivacaftor/lumacaftor, in
combination with polymyxin B, was over 100-fold more
potent than either one in isolation.193 Ivacaftor has also
been shown to be synergistic with tobramycin against S.
aureus195 and ciprofloxacin against P. aeruginosa.196 Finally,
recent preliminary in vitro studies evaluating the effects of
ETI demonstrated potentiation of neutrophilic antimicrobial
mechanisms critical for host anti-inflammatory response,
identifying yet another mechanism towards potential miti-
gation of chronic infection.197

Airway Infection Surveillance in the Age of
Highly Effective Modulator Therapy

Infection surveillance andmicrobiome analysis in pwCF have
traditionally utilized sputum; however, a significant propor-
tion of patients, particularly those with milder disease or of
younger age ranges are unable to expectorate sputum spon-
taneously. With a marked reduction in sputum production
from pwCF following HEMT, the need to consider new
noninvasive, sputum-independent sampling methods to
both diagnose and track CF lung infections is critical
(►Table 2). In particular, sputum induction with inhaled
hypertonic saline is a promising accessible technique with
good bacteriologic correlation by BAL in both children198–200

and adults.201 Recently, interest in the identification of
volatile organic compounds (VOCs) through exhaled breath
condensate (EBC) to facilitate rapid, noninvasive, and direct
analysis of ventilated lung to diagnose infections and enable
microbiota analysis has gained popularity. EBCs are a biolog-
ical matrix comprised of aerosolized particles from the
airway lining and water-soluble volatiles.202 Bacteria pro-
duce a broad spectrum of highly specific secondary metab-
olites including VOCs that can allow rapid and accurate
identification.203 Examination of VOCs released by classic
CF pathogens including P. aeruginosa204,205 and S. aureus206

reveals the presence of numerous compounds, with unique
metabolic profiles. This was further highlighted in a study of
1,099 VOCs from 105 CF children and healthy controls.207

Moreover, utilizing a panel of 22 VOCs, investigators were
able to discern CF subjects from controls with 100% certainty

and were further able to discriminate those with Pseudomo-
nas colonization.208 While EBCs are an attractive biomarker
target, lack of consistency and standardization raises con-
cerns over the multitude of confounders including varying
collection containers, preconcentration methods, and phase
of breath-sample obtained.209

Conclusions and Considerations About the
Future of Cystic Fibrosis Airway Infections

The use of HEMT has revolutionized the care of many pwCF
and is one of the most successful large-scale examples of
personalized therapy. While the benefits of HEMT in pwCF
have been clearly demonstrated, airway infection persists
and infection control measures to prevent patient–patient
spread will be required indefinitely. Moreover, the reduced
respiratory symptoms associated with HEMT come with the
paradoxical effect that attenuates the ability to assess for
airway infections easily and longitudinally (from spontane-
ously expectorated sputum) for the vast majority of individ-
uals, thus limitingour understandingof the natural historyof
CF infections. Understanding the impact of CFTR modulators
on the prevalence and incidence of airway infection is an
important and emerging area of research. If effective, early
intervention with CFTR modulators from infancy may aid in
the conservation of microbial diversity; providing less op-
portunity for the development of chronic airway infections
with classical pathogens,138 thereby reducing treatment bur-
den, which could further significantly improve the quality of
life of pwCF. While HEMTs are now available to an increasing
number of pwCF, they are not yet available for thosewith rarer
mutations and in particular for those with class I mutations.
Thus, ongoing attempts to surveil for incident infection with
new airway pathogens and controlling chronic airway infec-
tions will continue to remain a cornerstone of care for clini-
cians in the care of pwCF.
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