The Journal of Hip Surgery 2022; 06(02): 080-090
DOI: 10.1055/s-0042-1744132
Case Report

The Use of Robotic-Arm Assistance in Complex Primary Total Hip Arthroplasty: A Report of Three Challenging Cases

1   Department of Orthopaedic Surgery, Hackensack Meridian Health, Edison, New Jersey
2   Department of Orthopedic Surgery, Orthopaedic Institute Brielle Orthopaedics, Manasquan, New Jersey
,
Nicolas S. Piuzzi
3   Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
,
Paul Jacob
4   Department of Orthopedic Surgery, Oklahoma Joint Reconstruction Institute, Oklahoma City, Oklahoma
,
Robert M. Molloy
3   Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
,
Michael Bloomfield
3   Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
› Institutsangaben

Abstract

The purpose of this case report was to demonstrate the utility, versatility, and efficacy of robotic-arm technology in complex primary total hip arthroplasty (THA) cases for acetabular bone loss, hip dysplasia, and post-traumatic arthritis with hardware. Preoperative computer templating allows precise and accurate acetabular and femoral stem positioning in cases that presented with significant native deformity and bone loss. Robotic-arm THA may be a viable option for complex primary cases to optimize implant positioning and mitigate postoperative instability and complications.

Informed Consent

Each patient consented to have their THA data submitted for publication.




Publikationsverlauf

Eingereicht: 06. Juni 2021

Angenommen: 04. Januar 2022

Artikel online veröffentlicht:
09. März 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ethgen O, Bruyère O, Richy F, Dardennes C, Reginster JY. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 2004; 86 (05) 963-974
  • 2 Singh JA, Lewallen DG. Increasing obesity and comorbidity in patients undergoing primary total hip arthroplasty in the U.S.: a 13-year study of time trends. BMC Musculoskelet Disord 2014; 15: 441
  • 3 Yang EI, Hong G, Gonzalez Della Valle A. et al. Trends in inpatient resource utilization and complications among total joint arthroplasty recipients: a retrospective cohort study. J Am Acad Orthop Surg Glob Res Rev 2018; 2 (10) e058
  • 4 Chen X, Xiong J, Wang P. et al. Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis. Postgrad Med J 2018; 94 (1112): 335-341
  • 5 Nodzo SR, Chang CC, Carroll KM. et al. Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position: a CT-based study. Bone Joint J 2018; 100-B (10) 1303-1309
  • 6 Redmond JM, Gupta A, Hammarstedt JE, Petrakos A, Stake CE, Domb BG. Accuracy of component placement in robotic-assisted total hip arthroplasty. Orthopedics 2016; 39 (03) 193-199
  • 7 Tsai TY, Dimitriou D, Li JS, Kwon YM. Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy?. Int J Med Robot 2016; 12 (02) 288-295
  • 8 Perets I, Walsh JP, Close MR, Mu BH, Yuen LC, Domb BG. Robot-assisted total hip arthroplasty: clinical outcomes and complication rate. Int J Med Robot 2018; 14 (04) e1912
  • 9 Chai W, Guo RW, Puah KL, Jerabek S, Chen JY, Tang PF. Use of robotic-arm assisted technique in complex primary total hip arthroplasty. Orthop Surg 2020; 12 (02) 686-691
  • 10 Siddiqi A, White PB, Sloan M. et al. Total hip arthroplasty for developmental dysplasia of hip vs osteoarthritis: a propensity matched pair analysis. Arthroplast Today 2020; 6 (03) 607-611.e1
  • 11 Moya-Angeler J, Lane JM, Rodriguez JA. Metabolic bone diseases and total hip arthroplasty: preventing complications. J Am Acad Orthop Surg 2017; 25 (11) 725-735
  • 12 Stibolt Jr RD, Patel HA, Huntley SR, Lehtonen EJ, Shah AB, Naranje SM. Total hip arthroplasty for posttraumatic osteoarthritis following acetabular fracture: a systematic review of characteristics, outcomes, and complications. Chin J Traumatol 2018; 21 (03) 176-181
  • 13 Lu M, Phillips D. Total hip arthroplasty for posttraumatic conditions. J Am Acad Orthop Surg 2019; 27 (08) 275-285
  • 14 Nilsdotter AK, Lohmander LS, Klässbo M, Roos EM. Hip disability and osteoarthritis outcome score (HOOS)—validity and responsiveness in total hip replacement. BMC Musculoskelet Disord 2003; 4: 10
  • 15 Davis AM, Perruccio AV, Canizares M. et al. The development of a short measure of physical function for hip OA HOOS-physical function shortform (HOOS-PS): an OARSI/OMERACT initiative. Osteoarthritis Cartilage 2008; 16 (05) 551-559
  • 16 Paulsen A, Roos EM, Pedersen AB, Overgaard S. Minimal clinically important improvement (MCII) and patient-acceptable symptom state (PASS) in total hip arthroplasty (THA) patients 1 year postoperatively. Acta Orthop 2014; 85 (01) 39-48
  • 17 Bukowski BR, Anderson P, Khlopas A, Chughtai M, Mont MA, Illgen II RL. Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surg Technol Int 2016; 29: 303-308
  • 18 Domb BG, Chen JW, Lall AC, Perets I, Maldonado DR. Minimum 5-year outcomes of robotic-assisted primary total hip arthroplasty with a nested comparison against manual primary total hip arthroplasty: a propensity score-matched study. J Am Acad Orthop Surg 2020; 28 (20) 847-856
  • 19 Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 1978; 60 (02) 217-220