Aktuelle Ernährungsmedizin 2016; 41(05): 379-387
DOI: 10.1055/s-0042-116655
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Mikrobiologische Sicherheit und Hygiene von Käse

Microbiological Safety and Hygiene of Cheese
J. Brändle
BOKU – Universität für Bodenkultur Wien, Dept. für Lebensmittelwissenschaften und -technologie, Institut für Lebensmittelwissenschaften, Wien, Österreich
,
K. J. Domig
BOKU – Universität für Bodenkultur Wien, Dept. für Lebensmittelwissenschaften und -technologie, Institut für Lebensmittelwissenschaften, Wien, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
07 November 2016 (online)

Zusammenfassung

Mikroorganismen, insbesondere Bakterien, sind für die Käseproduktion essenziell. Als Starterkulturen sind sie für das Ansäuern der Milch zu Beginn des Produktionsprozesses verantwortlich und tragen zur Entwicklung der sortentypischen Charakteristik von Käse im Zuge der Reifung bei. Mitunter werden aber auch mikrobielle Krankheitserreger mit Käse assoziiert. Zu den potenziell vorhandenen Pathogenen gehören Erreger von gastrointestinalen Erkrankungen wie beispielsweise Salmonella enterica und Staphylococcus aureus. Besonders schwere Krankheitsverläufe werden bei Infektionen mit Shiga Toxin-bildenden E. coli (STEC) und Listeria monocytogenes beobachtet. Ist Käse dennoch ein sicheres Lebensmittel? Wie gelangen Mikroorganismen in den Käse und was bewirken sie im Hinblick auf Produktqualität und Lebensmittelsicherheit? Für eine Beantwortung dieser Fragen ist eine alleinige Betrachtung von Käse als Endprodukt nicht ausreichend. In diesem Artikel werden daher allgemeine mikrobielle Einflüsse und die Veränderung der Käsemikrobiota im Produktionsprozess von der Milch bis zur Käsereifung beschrieben. Zudem werden einige mikrobielle Methoden zur Käseanalytik vorgestellt. Vor diesem Hintergrund werden sowohl potenzielle mikrobielle Risiken sowie positive Gesundheitseffekte von Käse erläutert.

Abstract

Microorganisms and bacteria in particular, are an essential part of cheese production. They serve as starter cultures for the milk acidification in the beginning of the production process and contribute to the development of the characteristic cheese flavour during ripening. Pathogenic microorganisms, however, are also associated with cheese. Potential pathogens include Salmonella enterica and Staphylococcus aureus, which are causative agents of gastrointestinal diseases. Infections with Shiga toxin-producing E. coli and Listeria monocytogenes may lead to very severe illnesses. Is cheese still safe for consumption? How do microorganisms enter the cheese and what effect do they have on the product and food safety? To answer these questions, it is not enough to simply consider the final product. Therefore, this article describes microbial influences and the changes in the cheese microbiota during the production process from milking to ripening. Moreover, an overview of potential microbiological methods for the investigation of cheese is provided. Against this background, potential microbial hazards as well as health benefits of cheese are discussed.

 
  • Literatur

  • 1 Kammerlehner J. Käsetechnologie. Kammerlehner; 2012
  • 2 Fox J. Microbes make the cheese. In: FAQ. Washington, DC: American Academy of Microbiology; 2015
  • 3 Evershed RP, Payne S, Sherratt AG et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 2008; 455: 528-531
  • 4 Anonym. Österreichisches Lebensmittelbuch. Codexkapitel B32/Milch und Milchprodukte. IV. Auflage 2011
  • 5 Anonym. (Schweizer) Verordnung des EDI über Lebensmittel tierischer Herkunft. 817022108 2005
  • 6 Anonym. (Deutsche) Käseverordnung in der Fassung der Bekanntmachung. vom 14. April 1986 (BGBl. I S. 412), die zuletzt durch Artikel 19 des Gesetzes vom 25. Juli 2013 (BGBl. I S. 2722) geändert worden ist. 2013
  • 7 McSweeney PLH. Principal families of cheese: How are cheese varieties classified?. Cheese Problems Solved 2007; 181-183
  • 8 D’Amico DJ. Microbiological quality and safety issues in cheesemaking. In: Donnelly CW, ed. Cheese and Microbes. Washington D. C.: American Society for Microbiology; 2014: 251-309
  • 9 Quigley L, O’Sullivan O, Stanton C et al. The complex microbiota of raw milk. FEMS Microbiology Reviews 2013; 37: 664-698
  • 10 Høier E, Janzen T, Rattray F et al. The production, application and action of lactic cheese starter cultures. In: Technology of cheesemaking. Wiley-Blackwell; 2010: 166-192
  • 11 Johnson ME. Mesophilic and thermophilic cultures used in traditional cheesemaking. Microbiology spectrum 2013; 1: 1-18
  • 12 Chambers JV. The microbiology of raw milk. In: Dairy Microbiology Handbook. John Wiley & Sons, Inc.; 2005: 39-90
  • 13 Quigley L, McCarthy R, O’Sullivan O et al. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. Journal of Dairy Science 2013; 96: 4928-4937
  • 14 Zangerl P. Mikrobiologie der Produkte – Rohmilch. In: Krömker V, Hrsg. Kurzes Lehrbuch der Milchkunde und Milchhygiene. Stuttgart, Deutschland: Parey; 2007: 156-160
  • 15 Montel M-C, Buchin S, Mallet A et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology 2014; 177: 136-154
  • 16 Beresford TP, Fitzsimons NA, Brennan NL et al. Recent advances in cheese microbiology. International Dairy Journal 2001; 11: 259-274
  • 17 Parente E, Cogan TM. Starter cultures: General aspects. In: Fox PF, McSweeney PLH, Cogan TM, et al., eds. Cheese: Chemistry, Physics and Microbiology. Academic Press; 2004: 123-147
  • 18 Cogan TM, Beresford TP. Microbiology of hard cheese. In: Dairy Microbiology Handbook. John Wiley & Sons, Inc; 2005: 515-560
  • 19 Sheehan JJ. What are starters and what starter types are used for cheesemaking?. In: McSweeney PL, ed. Cheese Problems Solved. CRC Press; 2007: 36-37
  • 20 Farkye NY, Vedamuthu ER. Microbiology of soft cheeses. In: Dairy Microbiology Handbook. John Wiley & Sons, Inc; 2005: 479-513
  • 21 Giraffa G. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews 2004; 28: 251-260
  • 22 Bintsis T, Athanasoulas A. Dairy starter cultures. In: Papademas P, ed. Dairy Microbiology A Practical Approach. Boca Raton: CRC Press; 2015: 114-154
  • 23 Jakob E, Eugster E, Marie-Therese F-W. Gärungsvorgänge im Käse. Bern: Agroscope Liebefeld-Posieux; 2005
  • 24 Gobbetti M, De Angelis M, Di Cagno R et al. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends in Food Science & Technology 2015; 45: 167-178
  • 25 Peláez C, Requena T. Exploiting the potential of bacteria in the cheese ecosystem. International Dairy Journal 2005; 15: 831-844
  • 26 Poonam. Pophaly SD, Tomar SK et al. Multifaceted attributes of dairy propionibacteria: A review. World Journal of Microbiology and Biotechnology 2012; 28: 3081-3095
  • 27 Irlinger F, Mounier J. Microbial interactions in cheese: implications for cheese quality and safety. Current Opinion in Biotechnology 2009; 20: 142-148
  • 28 Schornsteiner E, Mann E, Bereuter O et al. Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds. International Journal of Food Microbiology 2014; 180: 88-97
  • 29 Ndoye B, Rasolofo EA, LaPointe G et al. A review of the molecular approaches to investigate the diversity and activity of cheese microbiota. Dairy Science and Technology 2011; 91: 495-524
  • 30 Busch U. Molekularbiologische Methoden in der Lebensmittelanalytik. Berlin, Heidelberg: Springer-Verlag; 2010
  • 31 Naum M, Lampel KA. Analytical methods | DNA-based assays. In: Fuquay JW, ed. Encyclopedia of Dairy Sciences (Second Edition). San Diego: Academic Press; 2011: 221-225
  • 32 Quigley L, O’Sullivan O, Beresford TP et al. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. International Journal of Food Microbiology 2011; 150: 81-94
  • 33 Jany J-L, Barbier G. Culture-independent methods for identifying microbial communities in cheese. Food Microbiology 2008; 25: 839-848
  • 34 Kanagawa T. Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering 2003; 96: 317-323
  • 35 Ercolini D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of Microbiological Methods 2004; 56: 297-314
  • 36 Fusco V, Quero GM. Culture-dependent and culture-independent nucleic-acid-based methods used in the microbial safety assessment of milk and dairy products. Comprehensive Reviews in Food Science and Food Safety 2014; 13: 493-537
  • 37 Forney LJ, Zhou X, Brown CJ. Molecular microbial ecology: land of the one-eyed king. Current Opinion in Microbiology 2004; 7: 210-220
  • 38 Lawson PA, Tsaltas D. Application of molecular methods for microbial identification in dairy products. In: Papademas P, ed. Dairy Microbiology. Boca Raton: CRC Press; 2015: 177-216
  • 39 Mayo B, Rachid CTCC, Alegría A et al. Impact of next generation sequencing techniques in food microbiology. Curr Genomics 2014; 15: 293-309
  • 40 Ercolini D. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Washington, DC: American Society for Microbiology; 2013
  • 41 Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International 2014; 2014: 1-9
  • 42 Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genetics and Molecular Research 2003; 2: 63-76
  • 43 Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiology Reviews 2012; 36: 815-836
  • 44 Johler S, Weder D, Bridy C et al. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J Dairy Sci 2015; 98: 2944-2948
  • 45 Johler S, Zurfluh K, Stephan R. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall. Journal of Dairy Science 2016; 99: 3345-3350
  • 46 Kousta M, Mataragas M, Skandamis P et al. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010; 21: 805-815
  • 47 Baker CA, Rubinelli PM, Park SH et al. Shiga toxin-producing Escherichia coli in food: Incidence, ecology, and detection strategies. Food Control 2016; 59: 407-419
  • 48 Baylis CL. Raw milk and raw milk cheeses as vehicles for infection by Verocytotoxin-producing Escherichia coli . International Journal of Dairy Technology 2009; 62: 293-307
  • 49 EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015; 13: 3991
  • 50 Lomonaco S, Nucera D, Filipello V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infection, Genetics and Evolution 2015; 35: 172-183
  • 51 Melo J, Andrew PW, Faleiro ML. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Research International 2015; 67: 75-90
  • 52 Lecuit M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clinical Microbiology and Infection 2005; 11: 430-436
  • 53 Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes and Infection 2007; 9: 1236-1243
  • 54 EFSA. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010 – 2011, Part A: Listeria monocytogenes prevalence estimates. EFSA Journal 2013; 11: 3241
  • 55 Bundesinstitut für Risikobewertung. Verbrauchertipps: Schutz vor lebensmittelbedingten Infektionen mit Listerien. Merkblatt für Verbraucher [Internet]. 2014. http://www.bfr.bund.de/cm/350/verbrauchertipps_schutz_vor_lebensmittelbedingten_infektionen_mit_listerien.pdf [zitiert am 11.05.2016]
  • 56 Alvarez MA, Moreno-Arribas MV. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology 2014; 39: 146-155
  • 57 Loizzo MR, Menichini F, Picci N et al. Technological aspects and analytical determination of biogenic amines in cheese. Trends in Food Science & Technology 2013; 30: 38-55
  • 58 Fernández M, Hudson JA, Korpela R et al. Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Research International 2015; 2015
  • 59 Bhattacharya A, Banu J, Rahman M et al. Biological effects of conjugated linoleic acids in health and disease. Journal of Nutritional Biochemistry 2006; 17: 789-810
  • 60 Plessas S, Bosnea L, Alexopoulos A et al. Potential effects of probiotics in cheese and yogurt production: A review. Engineering in Life Sciences 2012; 12: 433-440
  • 61 Grattepanche F, Miescher-Schwenninger S, Meile L et al. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Science and Technology 2008; 88: 421-444
  • 62 Anonym. Lebensmittelsicherheitsbericht 2013 – Zahlen, Daten, Fakten aus Österreich. Bundesministerium für Gesundheit; 2014
  • 63 Licitra G. World wide traditional cheeses: banned for business?. Dairy Science and Technology 2010; 90: 357-374