Rofo 2016; 188(05): 470-478
DOI: 10.1055/s-0042-103691
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study

Elektromagnetische Navigationssysteme im Vergleich: CT-gezielte Punktionen an einem Phantom
D. Putzer
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
D. Arco
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
B. Schamberger
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
F. Schanda
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
J. Mahlknecht
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
G. Widmann
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
P. Schullian
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
W. Jaschke
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
,
R. Bale
Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

07 October 2015

01 February 2016

Publication Date:
13 April 2016 (online)

Abstract

Purpose: We compared the targeting accuracy and reliability of two different electromagnetic navigation systems for manually guided punctures in a phantom.

Materials and Methods: CT data sets of a gelatin filled plexiglass phantom were acquired with 1, 3, and 5 mm slice thickness. After paired-point registration of the phantom, a total of 480 navigated stereotactic needle insertions were performed manually using electromagnetic guidance with two different navigation systems (Medtronic Stealth Station: AxiEM; Philips: PercuNav). A control CT was obtained to measure the target positioning error between the planned and actual needle trajectory.

Results: Using the Philips PercuNav, the accomplished Euclidean distances were 4.42 ± 1.33 mm, 4.26 ± 1.32 mm, and 4.46 ± 1.56 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.84 ± 1.59 mm, 3.84 ± 1.43 mm, and 3.81 ± 1.71 mm, respectively. Using the Medtronic Stealth Station AxiEM, the Euclidean distances were 3.86 ± 2.28 mm, 3.74 ± 2.1 mm, and 4.81 ± 2.07 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.29 ± 1.52 mm, 3.16 ± 1.52 mm, and 3.93 ± 1.68 mm, respectively.

Conclusion: Both electromagnetic navigation devices showed excellent results regarding puncture accuracy in a phantom model. The Medtronic Stealth Station AxiEM provided more accurate results in comparison to the Philips PercuNav for CT with 3 mm slice thickness. One potential benefit of electromagnetic navigation devices is the absence of visual contact between the instrument and the sensor system. Due to possible interference with metal objects, incorrect position sensing may occur. In contrast to the phantom study, patient movement including respiration has to be compensated for in the clinical setting.

Key points:

• Commercially available electromagnetic navigation systems have the potential to improve the therapeutic range for CT guided percutaneous procedures by comparing the needle placement accuracy on the basis of planning CT data sets with different slice thickness.

Citation Format:

• Putzer D, Arco D, Schamberger B et al. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study. Fortschr Röntgenstr 2016; 188: 470 – 478

Zusammenfassung

Ziel: Die Studie dient dem Vergleich der Zielgenauigkeit und Zuverlässigkeit von 2 elektromagnetischen Navigationssystemen für manuell gesteuerte Punktionen an einem Phantom.

Material und Methoden: CT-Datensätze eines mit Gelatine gefüllten Plexiglas-Phantoms wurden mit 1, 3 und 5 mm Schichtdicke erfasst. Nach Punkt-Paar-Registrierung des Phantoms wurden insgesamt 480 stereotaktisch navigierte, manuelle Nadelinsertionen mit 2 verschiedenen Navigationssystemen durchgeführt (Medtronic Stealth Sta-tion: AXIEM; Philips: PercuNav). Ein Kontroll-CT diente zur Messung der Abweichungen zwischen der geplanten und tatsächlichen Nadelposition.

Ergebnisse: Unter Verwendung von Philips PercuNav waren die euklidischen Abstände 4,42 ± 1,33 mm, 4,26 ± 1,32 mm und 4,46 ± 1,56 mm bei einer Schichtdicke von 1, 3 und 5 mm. Die mittleren seitlichen Positionsfehler waren 3,84 ± 1,59 mm, 3,84 ± 1,43 mm und 3,81 ± 1,71 mm. Unter Verwendung der Medtronic Stealth-Station AXIEM waren die euklidischen Abstände 3,86 ± 2,28 mm, 3,74 mm und ± 2,1 4,81 ± 2,07 mm bei einer Schichtdicke von 1, 3 und 5 mm. Die mittleren seitlichen Positionsfehler waren 3,29 ± 1,52 mm, 3,16 ± 1,52 mm und 3,93 ± 1,68 mm.  

Schlussfolgerung: Beide elektromagnetischen Navigationsgeräte lieferten ausgezeichnete Ergebnisse in Bezug auf die Genauigkeit. Die Medtronic Stealth-Station AXIEM ermöglichte genauere Ergebnisse im Vergleich zur Philips PercuNav, bei Durchführung der CT mit 3 mm Schichtdicke. Die Tatsache, dass elektromagnetische Navigationssysteme keinen direkten Sichtkontakt zwischen Nadel und Feldgenerator erfordern, ist ein potentieller Vorteil. Im Hinblick auf einen möglichen Einfluss von metallischen Objekten auf die Genauigkeit der Navigation sind weitere Studien zur Beurteilung notwendig. Im klinischen Alltag müssen im Rahmen der Navigation Bewegungsartefakte und Atemartefakte bedacht werden.

Kernaussagen:

• Kommerziell verfügbare, elektromagnetische Navigationssysteme haben das Potential, den therapeutischen Einsatzbereich von CT gezielten Punktionen zu erweitern, wenn man die Genauigkeit der Nadelplatzierung mit den Planungsdatensätzen in unterschiedlichen Schichtdicken vergleicht.

 
  • References

  • 1 Schullian P, Widmann G, Lang TB et al. Accuracy and diagnostic yield of CT-guided stereotactic liver biopsy of primary and secondary liver tumors. Comput Aided Surg 2011; 16: 181-187
  • 2 Bale R, Widmann G, Haidu M. Stereotactic radiofrequency ablation. Cardiovasc Intervent Radiol 2011; 34: 852-856
  • 3 Meyer BC, Wolf KJ, Wacker FK. Flat-detector CT-based electromagnetic navigation. Radiologe 2009; 49: 856-861
  • 4 Penzkofer T, Isfort P, Bruners P et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol 2010; 20: 2656-2662
  • 5 Lionberger DR, Weise J, Ho DM et al. How does electromagnetic navigation stack up against infrared navigation in minimally invasive total knee arthropasties?. J Arthropl 2008; 23: 573-580
  • 6 Harrison SE, Shooman D, Grundy PL. A prospective study of the safety and efficacy of frameless pinless electromagnetic image-guided puncture of cerebral lesions. Neurosurgery 2012; 70: 29-33
  • 7 Kruecker J, Viswanathan A, Borgert J et al. An electromagnetically tracked laparoscopic ultrasound for multi-modality minimally invasive surgery. Proceedings of Int’l Congress on Computer Assisted Radiology and Surgery (CARS). 746-751
  • 8 Stoffner R, Augschöll C, Widmann G et al. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study. Fortschr Röntgenstr 2009; 181: 851-858
  • 9 Bale R, Widmann G, Schullian P et al. Percutaneous stereotactic radiofrequency ablation of colorectal liver metastases. Eur Radiol 2012; 22: 930-937
  • 10 Haidegger T, Fenyvesi G, Sirokai B et al. Towards unified electromagnetic tracking system assessment statistic errors. Conf Proc IEEE Eng Med Biol Soc 2011; DOI: 10.1109/IEMBS.2011.6090539.
  • 11 Venkatesan AM, Kadoury S, Abi-Jaoudeh N et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 2011; 260: 848-856
  • 12 Verma S, Bhavsar AS, Donovan J. MR imaging-guided prostate biopsy techniques. Magn Reson Imaging Clin N Am 2014; 22: 135-144
  • 13 Levitt MR, O’Neill BR, Ishak GE et al. Image-guided cerebrospinal fluid shunting in children: catheter accuracy and shunt survival. J Neurosurg Pediatrics 2012; 10: 112-117
  • 14 Clark S, Sangra M, Hayhurst C et al. The use of noninvasive electromagnetic neuronavigation for slit ventricle syndrome and complex hydrocephalus in a pediatric population. J Neurosurg Pediatrics 2009; 2: 430-434
  • 15 Tan SH, Ganesan D, Prepageran N et al. A minimally invasive endoscopic transnasal approach to the craniovertebral junction in the paediatric population. Eur Arch Otorhinolarnygol 2014; 271: 3101-3105
  • 16 Yaniv Z, Wilson E, Lindisch E et al. Electromagnetic tracking in the clinical environment. Medical Physics 2009; Vol. 36, No. 3: 876-892
  • 17 Wood BJ, Zhang H, Durrani A et al. Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 2005; 16: 493-505
  • 18 Wiles AD, Thompson DG, Frantz DD. Accuracy assessment and interpretation for optical tracking systems. In: Galloway Jr RL, Ed Proceedings of SPIE Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display. 421-432
  • 19 Condino S, Ferrari V, Freschi C et al. Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. IndJMedRobot 2012; 8: 300-310
  • 20 Mallmann C, Wolf KJ, Wacker FK et al. Assessment of patient movement in interventional procedures using electromagnetic detection – comparison between conventional fixation and vacuum mattress. Fortschr Röntgenstr 2012; 184: 37-41
  • 21 Widmann G, Schullian P, Fasser M et al. CT-guided stereotactic targeting accuracy of osteoid osteoma. Int J Med Robot 2013; 9: 274-279
  • 22 Schullian P, Widmann G, Lang TB et al. Accuracy and diagnostic yield of CT-guided stereotactic liver biopsy of primary and secondary liver tumors. Comput Aided Surg 2011; 16: 181-187
  • 23 Meyer BC, Peter O, Nagel M et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 2008; 18: 2855-2864
  • 24 Appelbaum L, Sosna J, Nissenbaum Y et al. Electromagnetic navigation system for CT-guided puncture of small lesions. Am J Roentgenol 2011; 196: 1194-1200
  • 25 Krücker J, Xu S, Glossop N et al. Electromagnetic tracking for thermal ablation and puncture guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 2007; 18: 1141-1150
  • 26 Meier-Meitinger M, Nagel M, Kalender W et al. Computer-assisted navigation system for interventional CT-guided procedures: results of phantom and clinical studies. Fortschr Röntgenstr 2008; 180: 310-317
  • 27 Chen A, Pastis N, Furukawa B et al. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy. Chest 2015; 147: 1275-1281
  • 28 Widmann G, Schullian P, Haidu M et al. Respiratory motion control for stereotactic and robotic liver interventions. Int J Med Robot 2010; 6: 343-349
  • 29 Timinger H, Krueger S, Borgert J et al. Motion compensation for interventional navigation on 3D static roadmaps based on an affine model and gating. Phys Med Biol 2004; 49: 719-732
  • 30 Thibault B, Andrade JG, Dubuc M et al. Reducing radiation exposure during CRT implant procedures: early experience with a sensor-based navigation system. Pacing Clin Electrophysiol 2015; 38: 63-70
  • 31 Malliet N, Andrade JG, Khairy P et al. Impact of a Novel Catheter Tracking System on Radiation Exposure during the Procedural Phases of Atrial Fibrillation and Flutter Ablation. Pacing Clin Electrophysiol 2015; 38: 784-790
  • 32 Nieminen JM, Kirsch SR. Eddy current detection and compensation. Patent US 7,957,925, Northern Digital Inc., June 2011.
  • 33 Frantz DD, Wiles AD, Leis SE et al. Accuracy assessment protocols for electromagnetic tracking systems. Physics in Medicine and Biology 2003; Vol. 48, No. 14: 2241-2251
  • 34 Kettenbach J, Kara L, Toporek G et al. A robotic needle-positioning and guidance system for CT-guided puncture: Ex vivo results. Minim Invasive Ther Allied Technol 2014; 23: 271-278