Synlett 2020; 31(04): 315-326
DOI: 10.1055/s-0039-1690761
account
© Georg Thieme Verlag Stuttgart · New York

Benziodoxole-Derived Organosulfonates: The Strongest Hypervalent Iodine Electrophiles and Oxidants

Mekhman S. Yusubov
a   Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
a   Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
a   Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
b   Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA   Email: vzhdanki@d.umn.edu
› Author Affiliations
Our work was supported by a research grant from the National Science Foundation (CHE-1759798). M.S.Y. and A.Y. are grateful to the Russian Science Foundation (RSF-16-13-10081-P). This work was carried out as part of the Tomsk Polytechnic University Competitiveness Enhancement Program (VIU-69/2019).
Further Information

Publication History

Received: 07 November 2019

Accepted after revision: 17 November 2019

Publication Date:
04 December 2019 (online)


Abstract

This account describes the development of organosulfonyloxy-substituted iodine(III) and iodine(V) benziodoxole derived reagents, which are thermally stable compounds with useful reactivity patterns. Iodine(III) benziodoxoles and pseudobenziodoxoles are powerful electrophiles and mild oxidants toward various unsaturated compounds. In particular, pseudocyclic benziodoxole-derived triflate (IBA-OTf) is an efficient reagent for oxidative heteroannulation reactions. Aldoximes react with nitriles in the presence of IBA-OTf at room temperature to give 1,2,4-oxadiazoles in high yields. Moreover, IBA-triflate is used as a catalyst in oxidative heteroannulations with m-chloroperoxybenzoic acid as the terminal oxidant. The iodine(V) benziodoxole derived tosylates, DMP-tosylate and IBX-tosylate, are superior oxidants for the oxidation of structurally diverse, synthetically useful alcohols, utilized as key precursors in the total syntheses of polyketide antibiotics and terpenes. And finally, the most powerful hypervalent iodine(V) oxidant, 2-iodoxybenzoic acid ditriflate (IBX·2HOTf), is prepared by treatment of IBX with trifluoromethanesulfonic acid. According to the X-ray data, the I–OTf bonds in IBX-ditriflate have ionic character, leading to the high reactivity of this reagent in various oxidations. In particular, IBX-ditriflate can oxidize polyfluorinated primary alcohols, which are generally extremely resistant to oxidation.

1 Introduction

2 Iodine(III) Benziodoxole Based Organosulfonates

3 Pseudocyclic Iodine(III) Benziodoxole Triflate (IBA-triflate)

4 Pseudocyclic Iodine(III) Benziodoxole Tosylates

5 Iodine(V) Benziodoxole Derived Tosylates

6 Iodine(V) Benziodoxole Derived Triflate (IBX-ditriflate)

7 Conclusions

 
  • References

  • 1 Current address: Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
    • 2a Patai’s Chemistry of Functional Groups: The Chemistry of Hypervalent Halogen Compounds. Olofsson B, Marek I, Rappoport Z. John Wiley & Sons; Chichester: 2019
    • 2b Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. In Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Switzerland: 2016
    • 2c Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds 2014
    • 2d Hyatt IF. D, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Org. Biomol. Chem. 2019; 17: 7822
    • 2e Ghosh MK, Rajkiewicz AA, Kalek M. Synthesis 2019; 51: 359
    • 2f Flores A, Cots E, Berges J, Muniz K. Adv. Synth. Catal. 2019; 361: 2
    • 2g Yoshimura A, Saito A, Zhdankin VV. Chem. Eur. J. 2018; 24: 15156
    • 2h Zhdankin VV, Muñiz K. J. Org. Chem. 2017; 82: 11667
    • 2i Yoshimura A, Yusubov MS, Zhdankin VV. Org. Biomol. Chem. 2016; 14: 4771
    • 2j Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 3a Koser GF, Wettach RH. J. Org. Chem. 1980; 45: 1542
    • 3b Koser GF, Wettach RH, Smith CS. J. Org. Chem. 1980; 45: 1543
    • 3c Koser GF, Rebrovic L, Wettach RH. J. Org. Chem. 1981; 46: 4324
    • 3d Rebrovic L, Koser GF. J. Org. Chem. 1984; 49: 2462
    • 3e Koser GF, Relenyi AG, Kalos AN, Rebrovic L, Wettach RH. J. Org. Chem. 1982; 47: 2487
    • 3f Neilands O, Karele B. Zh. Org. Khim. 1970; 6: 885
  • 4 For a review, see: Koser GF. Aldrichimica Acta 2001; 34: 89
    • 5a Zefirov NS, Zhdankin VV, Koz’min AS. Izv. Akad. Nauk SSSR Ser. Khim. 1983; 1682
    • 5b Zefirov NS, Zhdankin VV, Dan’kov YV, Koz’min AS. Zh. Org. Khim. 1984; 20: 446
    • 5c Zefirov NS, Zhdankin VV, Dan’kov YV, Sorokin VD, Semerikov VN, Koz’min AS, Caple R, Berglund BA. Tetrahedron Lett. 1986; 27: 3971
    • 5d Zhdankin VV, Tykwinski R, Caple R, Berglund B, Koz’min AS, Zefirov S. Tetrahedron Lett. 1988; 29: 3717
    • 5e Zhdankin VV, Tykwinski R, Berglund B, Mullikin M, Caple R, Zefirov NS, Koz’min AS. J. Org. Chem. 1989; 54: 2609
    • 6a Hembre RT, Scott CP, Norton JR. J. Org. Chem. 1987; 52: 3650
    • 6b Izquierdo S, Essafi S, del Rosal I, Vidossich P, Pleixats R, Vallribera A, Ujaque G, Lledos A, Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
  • 7 Kitamura T, Inoue D, Wakimoto I, Nakamura T, Katsuno R, Fujiwara Y. Tetrahedron 2004; 60: 8855
    • 8a Kitamura T, Nagata K, Nakamura T, Furuki R, Taniguchi H. Tetrahedron 1995; 51: 6229
    • 8b Kitamura T, Zheng L, Fukuoka T, Fujiwara Y, Taniguchi H, Sakurai M, Tanaka R. J. Chem. Soc., Perkin Trans. 2 1997; 1511
    • 8c Kitamura T, Furuki R, Taniguchi H, Stang PJ. Tetrahedron 1992; 48: 7149
    • 9a Zhdankin VV. Adv. Heterocycl. Chem. 2015; 115: 1
    • 9b Zhdankin VV. Adv. Heterocycl. Chem. 2016; 116: 57
    • 10a Zhdankin VV, Kuehl CJ, Krasutsky AP, Formaneck MS, Bolz JT. Tetrahedron Lett. 1994; 35: 9677
    • 10b Krasutsky AP, Kuehl CJ, Zhdankin VV. Synlett 1995; 1081
    • 10c Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
    • 10d Review: Olding A, Ho CC. Aust. J. Chem. 2019; 72: 646
    • 11a Zhdankin VV, Kuehl CJ, Arif AM, Stang PJ. Mendeleev Commun. 1996; 50
    • 11b Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Mismash B, Woodward JK, Simonsen AJ. Tetrahedron Lett. 1995; 36: 7975
  • 12 Zhdankin VV, McSherry M, Mismash B, Bolz JT, Woodward JK, Arbit RM, Erickson S. Tetrahedron Lett. 1997; 38: 21
  • 13 Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
  • 14 For a review, see: Zhdankin VV, Protasiewicz JD. Coord. Chem. Rev. 2014; 275: 54
    • 15a Zhdankin VV, Kuehl CJ, Bolz JT, Formaneck MS, Simonsen AJ. Tetrahedron Lett. 1994; 35: 7323
    • 15b Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonsen AJ. J. Org. Chem. 1996; 61: 6547
    • 16a Panetta CA, Garlick SM, Durst HD, Longo FR, Ward JR. J. Org. Chem. 1990; 55: 5202
    • 16b Geary GC, Hope EG, Singh K, Stuart AM. Chem. Commun. 2013; 49: 9263
    • 16c Nappi M, He C, Whitehurst WG, Chappell BG. N, Gaunt MJ. Angew. Chem. Int. Ed. 2018; 57: 3178
  • 17 Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
    • 19a Frei R, Waser J. J. Am. Chem. Soc. 2013; 135: 9620
    • 19b Frei R, Wodrich MD, Hari DP, Borin P.-A, Chauvier C, Waser J. J. Am. Chem. Soc. 2014; 136: 16563
  • 20 Chen CC, Waser J. Org. Lett. 2015; 17: 736
  • 21 Aubineau T, Cossy J. Chem. Commun. 2013; 49: 3303
  • 22 Chen CC, Waser J. Chem. Commun. 2014; 50: 12923
    • 23a Fernandez Gonzalez D, Brand JP, Waser J. Chem. Eur. J. 2010; 16: 9457
    • 23b Fernandez Gonzalez D, Brand JP, Mondiere R, Waser J. Adv. Synth. Catal. 2013; 355: 1631
    • 23c Kamlar M, Cisarova I, Vesely J. Org. Biomol. Chem. 2015; 13: 2884
    • 24a Collins KD, Lied F, Glorius F. Chem. Commun. 2014; 50: 4459
    • 24b Feng C, Feng D, Loh T.-P. Chem. Commun. 2014; 50: 9865
    • 24c Finkbeiner P, Kloeckner U, Nachtsheim BJ. Angew. Chem. Int. Ed. 2015; 54: 4949
    • 24d Brand JP, Charpentier J, Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 24e Brand JP, Waser J. Org. Lett. 2012; 14: 744
    • 24f Feng C, Loh T.-P. Angew. Chem. Int. Ed. 2014; 53: 2722
    • 26a Ochiai M, Miyamoto K, Yokota Y, Suefuji T, Shiro M. Angew. Chem. Int. Ed. 2005; 44: 75
    • 26b Miyamoto K, Yokota Y, Suefuji T, Yamaguchi K, Ozawa T, Ochiai M. Chem. Eur. J. 2014; 20: 5447
    • 26c Ochiai M. Coord. Chem. Rev. 2006; 250: 2771
    • 26d Ochiai M, Miyamoto K, Shiro M, Ozawa T, Yamaguchi K. J. Am. Chem. Soc. 2003; 125: 13006
    • 27a Macikenas D, Skrzypczak-Jankun E, Protasiewicz JD. J. Am. Chem. Soc. 1999; 121: 7164
    • 27b Macikenas D, Skrzypczak-Jankun E, Protasiewicz JD. Angew. Chem. Int. Ed. 2000; 39: 2007
    • 27c Meprathu BV, Protasiewicz JD. Tetrahedron 2010; 66: 5768
    • 27d Yoshimura A, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2011; 17: 10538
    • 27e Zhu C, Yoshimura A, Ji L, Wei Y, Nemykin VN, Zhdankin VV. Org. Lett. 2012; 14: 3170
    • 27f Zhu C, Yoshimura A, Solntsev P, Ji L, Wei Y, Nemykin VN, Zhdankin VV. Chem. Commun. 2012; 48: 10108
    • 27g Hirt UH, Schuster MF. H, French AN, Wiest OG, Wirth T. Eur. J. Org. Chem. 2001; 1569
    • 27h Altermann SM, Richardson RD, Page TK, Schmidt RK, Holland E, Mohammed U, Paradine SM, French AN, Richter C, Bahar AM, Witulski B, Wirth T. Eur. J. Org. Chem. 2008; 5315
    • 27i Richardson RD, Page TK, Altermann S, Paradine SM, French AN, Wirth T. Synlett 2007; 538
    • 27j Qurban J, Elsherbini M, Alharbi H, Wirth T. Chem. Commun. 2019; 55: 7998
    • 27k Guilbault A.-A, Legault CY. ACS Catal. 2012; 2: 219
    • 27l Hamnett DJ, Moran WJ. Org. Biomol. Chem. 2014; 12: 4156
    • 27m Yoshimura A, Fuchs JM, Middleton KR, Maskaev AV, Rohde GT, Saito A, Postnikov PS, Yusubov MS, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2017; 23: 16738
  • 28 Yoshimura A, Nguyen KC, Klasen SC, Saito A, Nemykin VN, Zhdankin VV. Chem. Commun. 2015; 51: 7835
  • 29 Yoshimura A, Zhdankin VV. ARKIVOC 2017; (iii): 32
    • 30a Shah A.-u.-HA, Khan ZA, Choudhary N, Lohölter C, Schäfer S, Marie GP. L, Farooq U, Witulski B, Wirth T. Org. Lett. 2009; 11: 3578
    • 30b Dohi T, Ito M, Morimoto K, Minamitsuji Y, Takenaga N, Kita Y. Chem. Commun. 2007; 4152
    • 30c Bielawski M, Olofsson B. J. Chem. Soc., Chem. Commun. 2007; 2521
    • 30d Bouma MJ, Olofsson B. Chem. Eur. J. 2012; 18: 14242
    • 31a Yoshimura A, Nguyen KC, Klasen SC, Postnikov PS, Yusubov MS, Saito A, Nemykin VN, Zhdankin VV. Asian J. Org. Chem. 2016; 5: 1128
    • 31b Yoshimura A, Nguyen KC, Rohde GT, Saito A, Yusubov MS, Zhdankin VV. Adv. Synth. Catal. 2016; 358: 2340
  • 32 Wang H, Zhang D, Sheng H, Bolm C. J. Org. Chem. 2017; 82: 11854
  • 33 Yoshimura A, Klasen SC, Shea MT, Nguyen KC, Rohde GT, Saito A, Postnikov PS, Yusubov MS, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2017; 23: 691
  • 34 Yoshimura A, Shea MT, Guselnikova O, Postnikov PS, Rohde GT, Saito A, Yusubov MS, Nemykin VN, Zhdankin VV. Chem. Commun. 2018; 54: 10363
  • 35 Zhdankin VV. J. Org. Chem. 2011; 76: 1185
    • 36a Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
    • 36b Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
    • 37a Yusubov MS, Svitich DY, Yoshimura A, Nemykin VN, Zhdankin VV. Chem. Commun. 2013; 49: 11269
    • 37b Yusubov MS, Postnikov PS, Yusubova RY, Yoshimura A, Juerjens G, Kirschning A, Zhdankin VV. Adv. Synth. Catal. 2017; 359: 3207
  • 38 Schroeckeneder A, Stichnoth D, Mayer P, Trauner D. Beilstein J. Org. Chem. 2012; 8: 1523
  • 39 Yusubov MS, Soldatova NS, Postnikov PS, Valiev RR, Yoshimura A, Wirth T, Nemykin VN, Zhdankin VV. Chem. Commun. 2019; 7760
    • 40a Khan MM. T. Stud. Surf. Sci. Catal. 1991; 66: 31
    • 40b Neu HM, Yusubov MS, Zhdankin VV, Nemykin VN. Adv. Synth. Catal. 2009; 351: 3168
  • 41 Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
  • 42 Dohi T, Yamaoka N, Kita Y. Tetrahedron 2010; 66: 5775
    • 43a Miller AO, Peters D, Zur C, Frank M, Miethchen R. J. Fluorine Chem. 1997; 82: 33
    • 43b Benefice-Malouet S, Commeyras A. J. Fluorine Chem. 1995; 70: 103
    • 43c Hu C, Tang X. J. Fluorine Chem. 1993; 61: 217
    • 43d Kolarikova V, Simunek O, Rybackova M, Cvacka J, Brezinova A, Kvicala J. Dalton Trans. 2015; 44: 19663
    • 43e Ingrassia L, Mulliez M. Synthesis 1999; 1731
    • 43f Pierce OR, Kane TG. J. Am. Chem. Soc. 1954; 76: 300
  • 44 Organofluorine Chemistry, Principles and Commercial Applications . Banks RE, Smart BE, Tatlow JC. Plenum Press; New York: 1994