Synlett 2016; 27(20): 2761-2773
DOI: 10.1055/s-0036-1589409
account
© Georg Thieme Verlag Stuttgart · New York

Benziodoxol(on)e Reagents as Tools in Organic Synthesis: The Background behind the Discovery at the Laboratory of Catalysis and Organic Synthesis

Jerome Waser*
Laboratory of Catalysis and Organic Synthesis, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland   Email: jerome.waser@epfl.ch
› Author Affiliations
Further Information

Publication History

Received: 15 August 2016

Accepted after revision: 10 October 2016

Publication Date:
27 October 2016 (online)


Abstract

In this review, a personal account of our work in the field of hypervalent iodine reagents is presented. Pioneering experiments, which led to the discovery of the exceptional reactivity of EthynylBenziodoXol(on)e (EBX) reagents as electrophilic alkyne synthons is first discussed, including the alkynylation of ketoesters, olefins and heterocycles. Our further work involving EBX reagents in domino reactions and the alkynylation of thiols, as well as the use of benziodoxole reagents for azidation reactions is then described. Finally, the most recent results involving radicals and carbenes as reaction partners for EBX reagents and their first use in chemical biology are presented. The purpose of this review is not to give an extensive overview of our results, but to show the ‘true story’ beyond the discovery by presenting the most important pioneering experiments. Failed attempts and near misses are also briefly discussed.

1 Introduction

2 First Uses of EBX Reagents

3 Discovering New Reactions with Benziodoxole Reagents

4 New Partners for EBX Reagents

5 Going Beyond Synthetic Organic Chemistry

6 Conclusion

 
  • References

    • 1a Wirth T. Hypervalent Iodine Chemistry, Modern Developments in Organic Synthesis. Springer; New York: 2003
    • 1b Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 1c Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2014
    • 1d Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 2 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 3 Zhdankin VV. Curr. Org. Synth. 2005; 2: 121
    • 4a Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
    • 4b Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
  • 5 For a review, see: Charpentier J, Frueh N, Togni A. Chem. Rev. 2015; 115: 650
    • 6a Ochiai M, Masaki Y, Shiro M. J. Org. Chem. 1991; 56: 5511
    • 6b Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonsen AJ. J. Org. Chem. 1996; 61: 6547
    • 7a Brand JP, Fernandez Gonzalez D, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
    • 7b Brand JP, Waser J. Chem. Soc. Rev. 2012; 41: 4165
    • 7c Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2015; 54: 8876
    • 7d Waser J. Alkynylation with Hypervalent Iodine Reagents . In Hypervalent Iodine Chemistry . Wirth T. Springer International Publishing; Cham: 2016: 187-222
    • 7e Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
  • 8 Diederich F, Stang PJ, Tykwinski RR. Acetylene Chemistry: Chemistry, Biology and Material Science . Wiley-VCH; Weinheim: 2005
    • 9a Frantz DE, Fassler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
    • 9b Frantz DE, Fassler R, Tomooka CS, Carreira EM. Acc. Chem. Res. 2000; 33: 373
    • 9c Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
  • 10 Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
  • 11 Beringer FM, Galton SA. J. Org. Chem. 1965; 30: 1930

    • For selected examples, see:
    • 12a Ochiai M, Kunishima M, Nagao Y, Fuji K, Shiro M, Fujita E. J. Am. Chem. Soc. 1986; 108: 8281
    • 12b Ochiai M, Ito T, Takaoka Y, Masaki Y, Kunishima M, Tani S, Nagao Y. J. Chem. Soc., Chem. Commun. 1990; 118
    • 12c Stang PJ, Kitamura T. J. Am. Chem. Soc. 1987; 109: 7561
    • 12d Stang PJ, Williamson BL, Zhdankin VV. J. Am. Chem. Soc. 1991; 113: 5870
  • 13 The angle between the alkyne and phenyl should be 90° in the alkynyliodonium salt, and not 180° as in the original proposal.
  • 14 Poulsen TB, Bernardi L, Aleman J, Overgaard J, Jørgensen KA. J. Am. Chem. Soc. 2007; 129: 441
  • 15 Stang PJ, Boehshar M, Wingert H, Kitamura T. J. Am. Chem. Soc. 1988; 110: 3272
  • 16 Fernandez Gonzalez D, Brand JP, Waser J. Chem. Eur. J. 2010; 16: 9457
    • 17a Fernández González D, Brand JP, Mondière R, Waser J. Adv. Synth. Catal. 2013; 355: 1631
    • 17b Maruoka and co-workers were later able to develop an alkynylation with EBX reagents proceeding with more than 90% ee, see: Wu X, Shirakawa S, Maruoka K. Org. Biomol. Chem. 2014; 12: 5388
  • 18 We focused in particular on the activation of aldehydes with prolinol or MacMillan-type catalysts. In 2013, Huang and co-workers showed that it was possible to activate aldehydes with amines for α-alkynylation with EBX reagents, but only using unsubstituted pyrrolidine as the catalyst, see: Wang Z, Li X, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 14219
  • 19 Nicolai S, Erard S, Fernandez Gonzalez D, Waser J. Org. Lett. 2010; 12: 384
  • 20 Nicolai S, Piemontesi C, Waser J. Angew. Chem. Int. Ed. 2011; 50: 4680
  • 21 Brand JP, Siles JI. O, Waser J. Synlett 2010; 881
    • 22a Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 22b Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
  • 23 Brand JP, Charpentier J, Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 24a Brand JP, Waser J. Angew. Chem. Int. Ed. 2010; 49: 7304
    • 24b Brand JP, Chevalley C, Scopelliti R, Waser J. Chem. Eur. J. 2012; 18: 5655
    • 24c Brand JP, Waser J. Org. Lett. 2012; 14: 744
    • 24d Li YF, Waser J. Beilstein J. Org. Chem. 2013; 9: 1763
  • 25 Brand JP, Waser J. Synthesis 2012; 44: 1155
  • 26 Finkbeiner P, Kloeckner U, Nachtsheim BJ. Angew. Chem. Int. Ed. 2015; 54: 4949
  • 27 Ariafard A. ACS Catal. 2014; 4: 2896
    • 28a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 28b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 28c Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 28d Meldal M, Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 28e Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 28f Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 29a Zhdankin VV, Kuehl CJ, Krasutsky AP, Formaneck MS, Bolz JT. Tetrahedron Lett. 1994; 35: 9677
    • 29b Krasutsky AP, Kuehl CJ, Zhdankin VV. Synlett 1995; 1081
    • 29c Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
    • 29d Akai S, Okuno T, Egi M, Takada T, Tohma H, Kita Y. Heterocycles 1996; 42: 47

      Results obtained by Mr. Jonathan Brand and Gergely Tolnai. We ended up publishing these results only in 2016, see:
    • 30a Tolnai GL, Brand JP, Waser J. Beilstein J. Org. Chem. 2016; 12: 745

    • For a similar approach, see:
    • 30b Hansen MB, Hubalek F, Skrydstrup T, Hoeg-Jensen T. Chem. Eur. J. 2016; 22: 1572

      For selected examples, see:
    • 31a Tobisu M, Ano Y, Chatani N. Org. Lett. 2009; 11: 3250
    • 31b Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984

      For selected examples, see:
    • 32a Gong J, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4486
    • 32b Schaffner A.-P, Darmency V, Renaud P. Angew. Chem. Int. Ed. 2006; 45: 5847

      For selected examples of C–H functionalization with EBX reagents using late metal catalysis, see:
    • 33a Feng C, Loh T.-P. Angew. Chem. Int. Ed. 2014; 53: 2722
    • 33b Xie F, Qi Z, Yu S, Li X. J. Am. Chem. Soc. 2014; 136: 4780
    • 33c Collins KD, Lied F, Glorius F. Chem. Commun. 2014; 50: 4459

    • For selected examples of radical alkynylation, see:
    • 33d Liu X, Wang Z, Cheng X, Li C. J. Am. Chem. Soc. 2012; 134: 14330
    • 33e Zhang R.-Y, Xi L.-Y, Zhang L, Liang S, Chen S.-Y, Yu X.-Q. RSC Adv. 2014; 4: 54349
    • 33f Wang H, Guo LN, Wang S, Duan X.-H. Org. Lett. 2015; 17: 3054
  • 34 Tolnai GL, Ganss S, Brand JP, Waser J. Org. Lett. 2013; 15: 112
  • 35 Brand JP, Chevalley C, Waser J. Beilstein J. Org. Chem. 2011; 7: 565
  • 36 Hashmi AS. K, Schwarz L, Choi J.-H, Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
  • 37 Li Y, Brand JP, Waser J. Angew. Chem. Int. Ed. 2013; 52: 6743
  • 38 Hashmi AS. K, Yang WB, Rominger F. Chem. Eur. J. 2012; 18: 6576
  • 39 Li Y, Waser J. Angew. Chem. Int. Ed. 2015; 54: 5438
  • 40 Evano G, Blanchard N, Compain G, Coste A, Demmer CS, Gati W, Guissart C, Heimburger J, Henry N, Jouvin K, Karthikeyan G, Laouiti A, Lecomte M, Martin-Mingot A, Metayer B, Michelet B, Nitelet A, Theunissen C, Thibaudeau S, Wang JJ, Zarca M, Zhang CY. Chem. Lett. 2016; 45: 574

    • For selected examples, see:
    • 41a Stang PJ, Zhdankin VV. J. Am. Chem. Soc. 1990; 112: 6437
    • 41b Tykwinski RR, Williamson BL, Fischer DR, Stang PJ, Arif AM. J. Org. Chem. 1993; 58: 5235
    • 41c Koumbis AE, Kyzas CM, Savva A, Varvoglis A. Molecules 2005; 10: 1340
    • 41d Hamnett DJ, Moran WJ. Org. Biomol. Chem. 2014; 12: 4156
  • 42 Frei R, Waser J. J. Am. Chem. Soc. 2013; 135: 9620
  • 43 Frei R, Wodrich MD, Hari DP, Borin PA, Chauvier C, Waser J. J. Am. Chem. Soc. 2014; 136: 16563
  • 44 Wodrich MD, Caramenti P, Waser J. Org. Lett. 2016; 18: 60
  • 46 Frei R, Courant T, Wodrich MD, Waser J. Chem. Eur. J. 2015; 21: 2662
  • 47 Chen MS, White MC. Science 2007; 318: 783
  • 48 Sharma A, Hartwig JF. Nature 2015; 517: 600
  • 49 Vita MV, Waser J. Org. Lett. 2013; 15: 3246
    • 50a Vita MV, Waser J. Angew. Chem. Int. Ed. 2015; 54: 5290
    • 50b We thank Dr. Fides Benfatti and Dr. Tony O’Sullivan from Syngenta Crop Protection Münchwilen AG for providing DSC measurements.
  • 51 Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
    • 52a Vita MV, Mieville P, Waser J. Org. Lett. 2014; 16: 5768
    • 52b Vita MV, Caramenti P, Waser J. Org. Lett. 2015; 17: 5832

      For selected examples, see:
    • 53a Huang H, Zhang G, Gong L, Zhang S, Chen Y. J. Am. Chem. Soc. 2014; 136: 2280
    • 53b Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872

      For selected examples, see:
    • 54a Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 54b Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 54c Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 54d Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
  • 55 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 56 Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 57 Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
    • 58a Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
    • 58b Xia Y, Feng S, Liu Z, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2015; 54: 7891
  • 59 Hari DP, Waser J. J. Am. Chem. Soc. 2016; 138: 2190
    • 60a Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB. D, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Nature 2010; 468: 790
    • 60b Shannon DA, Weerapana E. Curr. Opin. Chem. Biol. 2015; 24: 18
  • 61 Abegg D, Frei R, Cerato L, Hari DP, Wang C, Waser J, Adibekian A. Angew. Chem. Int. Ed. 2015; 54: 10852 ; Figures 5B–D were adapted with permission from this publication. Copyright 2015, John Wiley and Sons
  • 62 Morelli P, Martin-Benlloch X, Tessier R, Waser J, Sakai N, Matile S. Polym. Chem. 2016; 7: 3465