Thromb Haemost 1994; 72(06): 819-824
DOI: 10.1055/s-0038-1648968
Original Article
Schattauer GmbH Stuttgart

Homozygosity for a Novel Missense Mutation in the Prothrombin Gene Causing a Severe Bleeding Disorder

S R Poort
The Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
J J Michiels
1   Department of Hematology, University Hospital Rotterdam, Rotterdam, The Netherlands
,
P H Reitsma
The Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
R M Bertina
The Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 07 July 1994

Accepted after revision 30 August 1994

Publication Date:
06 July 2018 (online)

Summary

A patient with a severe bleeding tendency and hypoprothrombin-emia (Factor II activity 2%, Factor II antigen 5%) was screened for the presence of alterations in his prothrombin gene. Direct sequencing of PCR fragments derived from the coding and flanking regions of the prothrombin gene, revealed that the patient was homozygous for an A ⟶ G substitution in exon 3. This substitution predicts the replacement of Tyr 44 (TAC) by Cys (TGC) in the prothrombin molecule. Both parents were found to be heterozygous for the same mutation. Further family studies revealed complete cosegregation of the mutation with the prothrombin deficiency. Only the five homozygous brothers and sisters of the propositus were clinically affected (severe hemorrhages including epistaxis, soft tissue, muscle and joint bleedings in all, and severe hemorrhages in the two women). The bleeding tendency therefore seems to inherit as an autosomal recessive trait.

 
  • References

  • 1 Degen SJF, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochemistry 1987; 26: 6165-6177
  • 2 Royle NJ, Irwin DM, Koschinsky ML, MacGillivray RTA, Hamerton JL. Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively. Somat Cell Mol Genet 1987; 13: 285-292
  • 3 Fenton JW. Regulation of thrombin generation and functions. Semin Thromb Hemost 1988; 14: 234-240
  • 4 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-518
  • 5 Josso F, Lavergne JM, Weilland C, Soulier JP. Etude immunologique de la protrombine et de la thrombine humaines. Thromb Diath Haemorrh 1967; 18: 311-317
  • 6 Shapiro SS, Martinez J, Holburn RR. Congential dysprothrombinemia: an inherited structural disorder of human prothrombin. J Clin Invest 1969; 48: 2251-2256
  • 7 Mammen EF. Congenital coagulation disorders. Sem Thromb Hemost 1983; 9: 13-16
  • 8 Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 glu-to-lys) and the localization of a third thrombin cleavage site. Brit J Haematol 1983; 54: 245-254
  • 9 Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem 1986; 261: 15045-15048
  • 10 Rabiet MJ, Furie BC, Furie B. Molecular defect in prothrombin Madrid. Substitution of arginine 273 by cysteine precludes activation. Thromb Haemost 1987; 58: 313 (abstract)
  • 11 Miyata T, Morita T, Inomoto T, Kawauchi A, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry 1987; 26: 1117-1122
  • 12 Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick-I: Substitution of cysteine for arginine-382. Biochemistry 1988; 27: 9160-9165
  • 13 Henriksen RA, Mann KG. Substitution of valine for glycin-558 in the congenital dysthrombin Quick-II alters primary substrate specificity. Biochemistry 1989; 28: 2078-2082
  • 14 Hedner U, Davie EW. Introduction to hemostasis and the vitamin K-depen-dent coagulation factors. In: The metabolic basis of inherited disease, Vol. II Scriver CR, Beaudet AL, Sly WS, Valle D. eds McGraw-Hill; New York: 1989. (6th ed.) 2107-2134
  • 15 Tamary H, Surrey S, Augustine JG, Schwartz E, Rappaport EF. Molecular characterization of hypoprothrombinemia. Blood 1991; 78: 65a
  • 16 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Molecular and genetic analysis of a compound heterozygote for dyspro-thrombinemia of prothrombin Tokushima and hypoprothrombinemia. Am J Hum Genet 1992; 51: 1386-1395
  • 17 Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta. Substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry 1992; 31: 7457-7462
  • 18 Morishita E, Saito M, Kumabushiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337 ⟶ Thr and Arg-388 ⟶His). Blood 1992; 80: 2275-2280
  • 19 Green PM, Montandon AJ, Bently DR, Giannelli F. Genetics and molecular biology of haemophilia A and B. Blood Coag Fibrinol 1991; 2: 539-565
  • 20 Lane DA, Ireland H, Olds RJ, Thein SL, Perry DJ, Aiach M. Antithrombin III: a database of mutations. Thromb Haemost 1991; 66: 657-661
  • 21 Giannelli F, Green PM, High KA, Sommer S, Poon MC, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Brownlee GG. Haemophilia B: database of point mutations and short additions and deletions -Fourth edition. Nucleic Acids Res 1993; 21: 3075-3087
  • 22 Reitsma PH, Poort SR, Bemardi F, Gandrille S, Long GL, Sala N, Cooper DN. Protein C deficiency: a database of mutations. Thromb Haemost 1993; 69: 77-84
  • 23 Van Creveld S. Congenital idiopathic hypoprothrombinemia. Acta Pediat Scan (Suppl) 1954; 100 (43) 245-255
  • 24 Hart HCh, Loeliger EA. Onderzoek naar de overerving van prothrombine deficientie. Ned Tijdschr Geneesk 1963; 107: 1107-1109
  • 25 Hart HCh. ICTH Conference, Thromb Diathes Hamorrh Suppl. 1965; 17: 209-212
  • 26 Maniatis T, Fritsch EF, Sambrook J. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor New York; 1982
  • 27 Owren PA. A quantitative one-stage method for the assay of prothrombin. Scan J Clin Lab Invest 1949; 1: 81-83
  • 28 Bertina RM, Marel van der NieuwkoopW, Loeliger EA. Spectrophoto-metric assays of prothrombin in plasma of patients using oral anticoagulants. Thromb Haemost 1979; 42: 1296-1305
  • 29 Bertina RM, Marel van der NieuwkoopW, Dubbeldam J, Boekhout-Mus-sert RJ, Veltkamp JJ. New method for the rapid detection of vitamin K deficiency. Clin Chim Acta 1980; 105: 93-98
  • 30 Poort SR, van der Linden IK, Krommenhoek-van EsC, Briet E, Bertina RM. Rabbit polyclonal antibodies against the calcium-dependent conformation of factor IX and their application in solid phase immunoradiometric assays. Thromb Haemost 1986; 55: 122-128
  • 31 Poort SR, Krommenhoek-van EsC, van der Linden IK, van Tilburg NH, Bertina RM. Defects of vitamin K-dependent factors in Ca(II)-stabilized structure. Thromb Haemost 1987; 58: 414
  • 32 Beaucage SL, Caruthers MH. Deoxynucleoside phosphoramidites: a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 1981; 22: 1859-1865
  • 33 Saiki RK, Gelfland DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-491
  • 34 Sanger F, Nicklen S, Coulsen AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463-5467
  • 35 Reitsma PH, Mandelaki E, Kasper CK, Bertina RM, Briet E. Two novel point mutations correlate with an altered development expression of blood coagulation factor IX (hemophilia B Leyden phenotype). Blood 1989; 73: 743-746
  • 36 Suttie JW, Hoskins JA, Engelke J, Hopfgartner A, Ehrlich H, Bang NU, Belagaje RM, Schoner B, Long GL. Vitamin K-dependent caroboxylase: a possible role of the substrate “propeptide” as an intracellular recognition site. Proc Natl Acad Sci USA 1987; 84: 634-637
  • 37 Erdjument H, Lane DA, Ireland H, Panico M, Di Marzo V, Blench I, Morris HR. Formation of a covalent disulfide-linked antithrombin-albumin complex by an antithrombin variant, antithrombin “Northwick Park”. J Biol Chem 1987; 262: 13381-13384
  • 38 Erdjument H, Lane DA, Panico M, Dimarzo V, Morris HR. Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J Biol Chem 1988; 263: 5589-5593
  • 39 Koopman J, Haverkate F, Grimbergen J, Engesser L, Novakora I, Kerst AFJA, Lord ST. Abnormal fibrinogens IJmuiden (BpArg 14 ⟶ Cys) and Nijmegen B (BβArg 44 Cys) form dilsulfide-linked fibrinogen-albumin complexes. Proc Natl Acad Sci USA 1992; 89: 3478-3482
  • 40 Wojcik EGC, van den Berg M, van der Linden IK, Poort SR, Cupers R, Bertina RM. FIX Zutphen: a Cys 18 ⟶ Arg mutation results in formation of a heterodimer with a, microglobulin and the inability to form a calcium induced conformation. Submitted for publication
  • 41 Thompson AR. Structure, function and molecular defects of factor IX. Blood 1986; 67: 565-572
  • 42 White GC, Shoemaker CB. Factor VIII gene and hemophilia A. Blood 1989; 73: 1-12
  • 43 Poort SR, Pabinger-Fasching I, Mannhalter C, Reitsma PH, Bertina RM. Twelve novel and two recurrent mutations in 14 Austrian families with hereditary protein C deficiency. Blood Coagul Fibrinol 1993; 4: 273-280
  • 44 Reitsma PH, Ploos van Anstel HK, Bertina RM. Three novel mutations in five unrelated subjects with hereditary protein S deficiency type I. J Clin Invest 1994; 93: 486-492
  • 45 Kassenbroek CK, Garcia PD, Walter P, Kelly B. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature (Lond.) 1988; 333: 90-93
  • 46 Rothman JE. Polypeptide chain binding proteins: catalytes of proteins folding and related processes in cells. Cell 1989; 59: 591-601
  • 47 Harlos K, Holland SK, Boys CWG, Burgess AI, Esnouf MP, Blake CCF. Vitamin K-dependent blood coagulation proteins form hetero-dimers. Nature 1987; 330: 82-84
  • 48 Soriano-Garcia M, Park CH, Tulinsky A, Ravichandran KG, Skrzypczak-Jankun E. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry 1989; 28: 6805-6810
  • 49 Soriano-Garcia M, Padmanabhan K, de Vos AM, Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31: 2554-2566
  • 50 Pollock JS, Shepard AJ, Weber DJ, Olson DL, Klapper DG, Pedersen LG, Hiskey RG. Phospholipid binding properties of bovine prothrombin peptide residue 1-45. J Biol Chem 1988; 263: 14216-14223
  • 51 Schwalbe RA, Ryan J, Stem DM, Kisiel W, Dahlbäck B, Nelsestuen GL. Protein structural requirements and properties of membrane binding by γ-carboxyglutamic acid-containing plasma proteins and peptides. J Biol Chem 1989; 264: 20288-20296