Thromb Haemost 1991; 66(06): 657-661
DOI: 10.1055/s-0038-1646481
Original Article
Schattauer GmbH Stuttgart

Antithrombin III: A Database of Mutations

D A Lane
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
,
H Ireland
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
,
R J Olds
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
,
S L Thein
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
,
D J Perry
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
,
M Aiach
The Department of Haematology, Charing Cross and Westminster Medical School, Institute for Molecular Medicine, John Radcliffe Hospital, Oxford, Department of Haematology, MRC Centre, Cambridge, United Kingdom, and Laboratoire d'hémostase, Hôpital Broussais, Paris, France
› Author Affiliations
Further Information

Publication History

Received 04 March 1991

Accepted 06 June 1991

Publication Date:
26 July 2018 (online)

Summary

Elucidation of the molecular defects reponsible for antithrombin III deficiency is proceeding rapidly. In order that a record is kept of the new and duplicated mutations that are found, we have compiled a database that we plan to update annually. In this, the first report of the database, we list 6 antithrombin III locus sequence polymorphisms and 94 recorded mutations causing functional deficiency of the protein, 38 of which are novel. As is the case with mutations affecting other protein genes, most mutations of antithrombin III involve a CG to TG or CA change.

 
  • References

  • 1 Petersen TE, Dudek-Wojciechowska G, Sottrup-Jensen L, Magnusson S. Primary structure of antithrombin III (heparin cofactor). Partial homology between α1 antitrypsin and antithrombin III. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis.. Collen D, Wiman B, Verstraete M. (eds) Elsevier Science Publishers, Amsterdam: 1979. pp 43-54
  • 2 Bock SC, Wion KL, Vehar GA, Lawn RM. Cloning and expression of the cDNA for human antithrombin III gene. Nucl Acid Res 1982; 10: 8113-25
  • 3 Chandra T, Stackhouse R, Kidd VJ, Woo SLC. Isolation and sequence characterisation of a cDNA clone of human antithrombin III. Proc Natl Acad Sci USA 1983; 80: 1845-8
  • 4 Prochownik EV, Markham AF, Orkin SH. Isolation of a cDNA clone for human antithrombin III. J Biol Chem 1983; 258: 8389-93
  • 5 Huber R, Carrell RW. Implications of the three dimensional structure of al antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-66
  • 6 Thaler E, Lechner K. Antithrombin deficiency and thromboembolism. Clin Hematol 1981; 10: 369-90
  • 7 Engesser L. Thrombophilia: disorders of blood coagulation and fibrinolysis. PhD University of Leiden, Leiden 1988
  • 8 Bjork I, Olson ST, Shore JD. Molecular mechanisms of the accelerating effect of heparin on the reactions between antithrombin and the clotting proteinases. In: Heparin: Chemical and Biological Properties, Clinical Applications.. Lane D, Lindahl U. (eds) Edward Arnold, London: 1989. pp 229-55
  • 9 Lane DA, Caso R. Antithrombin: structure, genomic organization, function and inherited deficiency. Bailliere Clin Haematol 1989; 2: 961-98
  • 10 Bock SC, Harris JF, Balazs I, Trent JM. Assignment of the human antithrombin III structural gene to chromosome 1q 23-25. Cytogenet Cell Genet 1985; 39: 67-9
  • 11 Bock SC, Marrinan JA, Radziejewska E. Antithrombin III Utah: proline 407 to leucine mutation in a highly conserved region near the inhibitor reactive site. Biochemistry 1988; 27: 6171-8
  • 12 Devraj-Kizuk R, Chui DHK, Prochownik EV, Carter CJ, Ofosu FA, Blajchman MA. Antithrombin HI Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood 1988; 72: 1518-23
  • 13 Caso R, Lane DA, Thompson EA, Olds RJ, Thein SL, Panico M, Blench I, Morris H, Freyssinet JM, Aiach M, Rodeghiero F, Finazzi G. Antithrombin Vicenza, Ala 384 to Pro (GCA to CCA) mutation transforming the inhibitor into a substrate. Br J Haematol 1990; 77: 87-92
  • 14 Olds RJ, Lane DA, Caso R, Panico M, Moris HR, Sas G, Dawes J, Thein SL. Antithrombin III Budapest: a single amino acid substitution (429 Pro to Leu) in a region highly conserved in the serpin super family. Submitted.
  • 15 Ireland H, Lane DA, Thompson E, Walker ID, Blench I, Morris H, Freyssinet JM, Grunebaum L, Olds R, Thein SL. Antithrombin Glasgow II: Alanine 382 to threonine mutation in the serpin P12 position, resulting in a substrate reaction with thrombin. Br J Haematol 1991 in press.
  • 16 Bock SC, Levitan DJ. Characterisation of an unusual length polymorphism 5' to the antithrombin III gene. Nucl Acid Res 1983; 11: 8569-82
  • 17 Prochownik EV, Antonarakis S, Bauer KA, Rosenberg RD, Fearon ER, Orkin SH. Molecular heterogeniety of inherited antithrombin III deficiency. N Engl J Med 1983; 308: 1549-52
  • 18 Daly ME, Perry DJ. Dde I polymorphism in intron 5 in the antithrombin III gene. Nucl Acid Res 1990; 18: 5583
  • 19 Daly M, Bruce D, Perry DJ, Price J, Harper PL, O'Meara A, Carrell RW. Antithrombin Dublin (–3 Val to Glu): an N-terminal variant which has an aberrant signal peptide cleavage site. FEBS Lett 1990; 273: 87-90
  • 20 Sas G, Banhegyi D, Blasko G, Domjam G. Heterogeneity of the "classical" antithrombin III deficiency. Thromb Haemostas 1980; 43: 133-6
  • 21 Finazzi G, Caccia R, Barbui T. Different prevalence of thromboembolism in the subtypes of congenital antithrombin III deficiency: review of 404 cases. Thromb Haemostas 1987; 58: 1094
  • 22 Hultin MB, McKay J, Abildgaard U. Antithrombin Oslo: Type Ib classification of the first reported antithrombin-deficient family with a review of the hereditary antithrombin variants. Thromb Haemostas 1988; 59: 468-73
  • 23 Mohlo-Sabatier P, Aiach M, Gaillard I, Fiessinger JN, Fischer AM, Chadeuf G, Clauser E. Molecular characterization of antithrombin III (AT III) variants using polymerase chain reaction. Identification of the ATIII Charleville as an Ala384 Pro mutation. J Clin Invest 1989; 84: 1236-41
  • 24 Vidaud D, Emmerich J, Sireix ME, Sié P, Alhenc-Gelas M, Aiach M. Molecular basis for antithrombin III type I deficiency: 3 novel mutations located in exon IV Submitted.
  • 25 Vidaud D, Gandrille S, Emmerich J, Sirieix ME, Alhenc-Gelas M, Fiessinger JN, Sié P, Gouault-Heilman M, Aiach M. Identifications of 6 novel mutations responsible for type I AT III deficiencies. Thromb Haemostas 1991; 65: 911 (Abstr)
  • 26 Vidaud D, Sirieix ME, Alhenc-Gelas M, Chadeuf G, Aillaud MF, Juhan-Vague I, Aiach M. A double heterozygosity in 2 brothers with antithrombin (ATIII) deficiency due to the association of an Arg 47 to His mutation with a 9 base pair (bp) deletion in exon VI. Thromb Haemostas 1991; 65: 838 (Abstr)
  • 27 Olds RJ, Thein SL, Ireland H, Lane DA, Boisclair M, Conard J, Horellou MH. Identification of 402 phenylalanine as a functionally important residue in antithrombin. Thromb Haemostas 1991; 65: 670 (Abstr)
  • 28 Perry PJ, Carrell RW. CpG dinuclcolides are "hotspots" for mutation in the antithrombin III gene. Twelve variants identified using the polymerase chain reaction. Mol Biol Med 1989; 6: 239-43
  • 29 Wu S, Seino S, Bell GI. Human antithrombin III (AT3) gene length polymorphism revealed by the polymerase chain reaction. Nucl Acid Res 1989; 17: 6433
  • 30 Olds RJ, Lane DA, Finazzi G, Barbui T, Thein SL. A frameshift mutation leading to type 1 antithrombin deficiency and thrombosis. Blood 1990; 76: 2182-6
  • 31 Olds RJ, Lane DA, Ireland H, Leone G, De Stefano V, Cazenave JP, Wiesel ML, Thein SL. Novel point mutations leading to type Ia antithrombin deficiency and thrombosis. Br J Haematol 1991; 78: 408-13
  • 31a Olds RJ, Lane DA, Ireland H, Finazzi G, Barbui T, Abildgaard U, Girolami A, Thein SL. A common point mutation producing type Ia antithrombin III deficiency. AT 129 CGA to TGA (Arg to stop). Thromb Res (in press)
  • 32 Gandrille S, Vidaud D, Emmerich J, Clauser E, Sie P, Fiessinger JN, Alhenc-Gelas M, Priollet P, Aiach M. Molecular basis for hereditary antithrombin III quantitative deficiencies: a stop codon in exon IIIa and a frameshift in exon V1. Br J Haematol 1991; 78: 414-20
  • 33 Bock SC, Silberman JA, Wikoff W, Abildgaard U, Hultin MB. Identification of a threonine for alanine substitution at residue 404 of antithrombin III Oslo suggests integrity of the 404-407 region is important for maintaining normal inhibitor levels. Thromb Haemostas 1989; 62: 494
  • 34 Nakagawa M. Antithrombin deficiency and its molecular analysis. In: Proceedings of the Kyoto Satellite Symposium "Recent Advances in Antithrombin Research" of the XII Congress of the ISTH. 1989
  • 35 Perry PJ, Harper PL, Fairham S, Daly M, Carrell RW. Antithrombin Cambridge, 384 Ala to Pro: A new variant identified using the polymerase chain reaction. FEBS Lett 1989; 254: 174-6
  • 36 Penwarchuk WJ, Fernandez-Rachubinski F, Rachubinski RA, Blajchman MA. Antithrombin III Sudbury, an Ala 384 to Pro mutation with abnormal thrombin binding activity and thrombotic diathesis. Thromb Res 1990; 59: 793-8
  • 37 Fernandez-Rachubinski F, Rachubinski R, Blajchman MA. Genetic characterisation of kindreds with antithrombin III (AT-III) deficiency using selected amplification of the gene. Blood 1990; 76 (Suppl 1) 506a
  • 38 Erdjument H, Lane DA, Panico M, diMarzo V, Morris HR. Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow. J Biol Chem 1988; 263: 5589-93
  • 39 Erdjument H, Lane DA, Ireland H, Panico M, DiMarzo V, Blench I, Morris HR. Formation of a covalent disulfide-linked antithrombin complex by an antithrombin variant, antithrombin Northwick Park. J Biol Chem 1987; 262: 13381-4
  • 40 Erdjument H, Lane DA, Ireland H, DiMarzo V, Panico M, Morris HR, Tripodi A, Mannucci PM. Antithrombin Milano, single amino acid substitution at the reactive site, Arg 393 to Cys. Thromb Haemostas 1988; 60: 471-5
  • 41 Ireland H, Lane DA, Thompson E, Olds R, Thein SL, Hach-Wunderle V, Scharrer I. Antithrombin Frankfurt I: arginine to cysteine substitution at the reactive site and formation of a variant antithrombin-albumin covalent complex. Thromb Haemostas 1991; 65: 913 (Abstr)
  • 42 Lane DA, Erdjument H, Flynn A, DiMarzo V, Panico M, Morris H, Greaves M, Dolan G, Preston FE. Antithrombin Sheffield: amino acid substitution at the reactive site (Arg 393 to His) causing thrombosis. Br J Haematol 1989; 71: 91-6
  • 43 Erdjument H, Lane DA, Panico M, DiMarzo V, Morris HR, Bauer K, Rosenberg RD. Antithrombin Chicago, amino acid substitution of arginine 393 to histidine. Thromb Res 1989; 54: 613-9
  • 44 Lane DA, Erdjument H, Thompson E, Panico M, DiMarzo V, Morris HR, Leone G, De Stefano V, Thein SL. A novel amino acid substitution in the reactive site of a congenital variant antithrombin. Antithrombin Pescara, Arg 393 to Pro, caused by CGT to CCT mutation. J Biol Chem 1989; 264: 10200-4
  • 45 Owen MC, George PM, Lane DA, Boswell DR. P1 variant anti-thrombins Glasgow (393 Arg to His) and Pescara (393 Arg to Pro) have increased heparin affinity and are resistant to catalytic cleavage by elastase. Implications for the heparin activation mechanism. FEBS Lett 1991; 280: 216-20
  • 46 Stephens AW, Thalley BS, Hirs CHW. Antithrombin Denver, a reactive site variant. J Biol Chem 1987; 262: 1044-8
  • 47 Olds RJ, Lane D, Caso R, Tripodi A, Mannucci PM, Thein SL. Antithrombin III Milano 2: a single base substitution in the thrombin binding domain detected with PCR and direct genomic sequencing. Nucl Acid Res 1989; 17: 10511
  • 48 Brennan SO, Borg JY, George PM, Soria C, Soria J, Caen J, Carrell RW. New carbohydrate site in mutant antithrombin (7Ile-Asn) with decreased heparin affinity. FEBS Lett 1988; 237: 118-22
  • 49 Borg JY, Brennan SO, Carrell RW, George P, Perry DJ, Shaw J. Antithrombin Rouen IV 24 Arg to Cys. The amino terminal contribution to heparin binding. FEBS Lett 1990; 266: 163-6
  • 50 Chang JY, Tran TH. Antithrombin Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J Biol Chem 1986; 261: 1174-6
  • 51 Daly M, Ball R, O'Meara A, Hallinan FM. Identification and characterisation of an antithrombin III mutant (AT Dublin 2) with marginally decreased heparin reactivity. Thromb Res 1989; 56: 503-13
  • 52 Koide T, Odani S, Takahashi K, Ono T, Sakuragawa N. Antithrombin III Toyama; replacement of Arginine 47 by Cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci USA 1984; 81: 289-93
  • 53 Duchange N, Chasse JF, Cohen GN, Zakin MM. Identification of a mutation leading to cysteine replacement in a silent deficiency. Nucl Acid Res 1986; 14: 2408
  • 54 Brunei F, Duchange N, Fischer AM, Cohen GN, Zakin MM. Antithrombin III Alger: a new case of Arg 47 - Cys mutation. Am J Hematol 1987; 25: 223-4
  • 55 Olds RJ, Lane DA, Caso R, Girolami A, Thein SL. Antithrombin III Padua II: a single base substitution in exon 2 detected using PCR and direct genomic sequencing. Nucl Acid Res 1990; 18: 1926
  • 56 Owen MC, Shaw GJ, Grau E, Fontcuberta J, Carrell RW, Boswell DR. Molecular characterisation of antithrombin Barcelona 2: 47 arginine to cysteine. Thromb Res 1989; 55: 451-7
  • 57 Ueyama H, Murakami T, Nishiguchi S, Maeda S, Hashimoto Y, Okajima K, Shimada K, Araki S. Antithrombin Kumamoto. Identification of a point mutation and genotype analysis of the family. Thromb Haemostas 1990; 63: 231-4
  • 58 Owen MC, Borg JY, Soria C, Soria J, Caen J, Carrell RW. Heparin binding defect in new antithrombin III variant: Rouen, 47 Arg to His. Blood 1987; 69: 1275-9
  • 59 Caso R, Lane DA, Thompson E, Zangouras D, Panico M, Morris H, Olds RJ, Thein SL, Girolami A. Antithrombin Padua I: impaired heparin binding caused by an Arg 47 to His (CGT to CAT) substitution. Thromb Res 1990; 5 8 185-90
  • 60 Wolf M, Boyer-Neumann C, Mohlo-Sabatier P, Neumann C, Meyer D, Larrieu MJ. Familial variant of antithrombin III (ATIII Bligny, 47 Arg to His) associated with protein C deficiency. Thromb Haemostas 1990; 63: 215-9
  • 61 Borg JY, Owen MC, Soria C, Soria J, Caen J, Carrell RW. Arginine 47 is a prime heparin binding site in antithrombin. A new variant Rouen II, 47 Arg to Ser. J Clin Invest 1988; 81: 1292-6
  • 62 Gandrille S, Aiach M, Lane DA, Vidaud D, Mohlo-Sabatier P, Caso R, de Moerloose P, Fiessinger JN, Clauser E. Important role of Arg 129 in heparin binding site of antithrombin III: identification of novel mutation Arg 129 to Gln. J Biol Chem 1990; 2 65 18997-19001