RSS-Feed abonnieren
DOI: 10.1055/s-0038-1634391
Classification of EEG Mental Patterns by Using Two Scalp Electrodes and Mahalanobis Distance-Based Classifiers
Publikationsverlauf
Received
13. August 2001
Accepted
30. Januar 2002
Publikationsdatum:
07. Februar 2018 (online)
Summary
Objectives: In this paper, we explored the use of quadratic classifiers based on Mahalanobis distance to detect mental EEG patterns from a reduced set of scalp recording electrodes.
Methods: Electrodes are placed in scalp centro-parietal zones (C3, P3, C4 and P4 positions of the international 10-20 system). A Mahalanobis distance classifier based on the use of full covariance matrix was used.
Results: The quadratic classifier was able to detect EEG activity related to imagination of movement with an affordable accuracy (97% correct classification, on average) by using only C3 and C4 electrodes.
Conclusions: Such a result is interesting for the use of Mahalanobis-based classifiers in the brain computer interface area.
-
References
- 1 American Electroencephalographic Society. Guideline thirteen: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 1994 pp. 111-3.
- 2 Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001; Apr 112 (Suppl. 04) 713-9.
- 3 Gevins A. Dynamic functional topography of cognitive task. Brain Topogr 1989; 2: 37-56.
- 4 Gevins A, Brickett P, Reutter B, Desmond J. Seeing through the skull: advanced EEGs use MRIs to accurately measure cortical activity from the scalp. Brain Topogr 1991; 4: 125-31.
- 5 Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F. Human movement-related potentials vs. desynchronization of EEG alpha rhythm. a high resolution EEG study. NeuroImage 1999; Dec 10 (Suppl. 06) 658-65.
- 6 Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B. High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroenceph. clin. Neurophysiol 1994; 39: 337-58.
- 7 Nunez P. Estimation of large scale neocortical source activity with EEG surface Laplacians. Brain Topogr 1989; 2: 141-54.
- 8 Guger C, Ramoser H, Pfurtscheller G. Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). IEEE Trans Rehabil Eng 2000; Dec 8 (Suppl. 04) 447-56.
- 9 Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 2000; Dec 8 (Suppl. 04) 441-6.
- 10 Muller T, Ball T, Kristeva-Feige R, Mergner T, Timmer J. Selecting relevant electrode positions for classification tasks based on the electroencephalogram. Med Biol Eng Comput 2000; Jan 38 (Suppl. 01) 62-7.
- 11 Costa EJ, Cabral Jr EF. EEG-based discrimination between imagination of left and right hand movements using Adaptive Gaussian Representation. Med Eng Phys 2000; Jun 22 (Suppl. 05) 345-8.
- 12 Pfurtscheller G, Flotzinger D, Mohl W, Peltoranta M. Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks. Electroenceph. clin. Neurophysiol 1992; 82: 313.
- 13 Pfurtscheller G, Kalcher J, Neuper C, Flotzinger D, Pregenzer M. Online EEG classification during externally-paced hand movements using a neural network-based classifier. Electroencephalogr Clin Neurophysiol 1996; 99: 416-25.
- 14 Flotzinger D, Pfurtscheller G, Neuper C, Berger J, Mohl W. Classification of non-averaged EEG data by learning vector quantisation and the influence of signal preprocessing. Med & Biol Eng & Comput 1994; 32: 571.
- 15 Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 1999; 110 (Suppl. 05) 787-98.
- 16 Babiloni F, Cincotti F, Lazzarini L, Millán J, Mouriño J, Varsta M, Heikkonen J, Bianchi L, Marciani MG. Linear classification of low-resolution EEG patterns produced by imagined hand movements, IEEE Trans. on Rehab. Engng. 2000; 8: 186-8.
- 17 Babiloni F, Babiloni C, Anello C, Carducci F, Fattorini L, Onorati P, Urbano A. High resolution EEG: new model-dependent spatial deblurring method using a realistically shaped MR constructed subject’s head model. Electroenceph. clin. Neurophysiol 1997; 102 (Suppl. 02) 69-80.
- 18 Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F. High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images,. Medical & Biological Engineering & Computing 2000; 38: 512-9.
- 19 Zar H. Biostatistical analysis. Prentice Hall; New York: 1984
- 20 Fukunaga K. Statistical Pattern Recognition. Oxford University Press; 1994
- 21 Bishop C. Neural Networks for Pattern Recognition. Oxford University Press; 1995
- 22 Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Don-chin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000; Jun 8 (Suppl. 02) 164-73.
- 23 Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kubler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature 1999; Mar 25 398 6725 297-8.
- 24 Pfurtscheller G, Guger C, Muller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 2000; Oct 13 292 (Suppl. 03) 211-4.